1
|
Matzrafi M, Abu-Nassar J, Klap C, Shtarkman M, Smith E, Dombrovsky A. Solanum elaeagnifolium and S. rostratum as potential hosts of the tomato brown rugose fruit virus. PLoS One 2023; 18:e0282441. [PMID: 36857395 PMCID: PMC9977001 DOI: 10.1371/journal.pone.0282441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Invasive weeds cause significant crop yield and economic losses in agriculture. The highest indirect impact may be attributed to the role of invasive weeds as virus reservoirs within commercial growing areas. The new tobamovirus tomato brown rugose fruit virus (ToBRFV), first identified in the Middle East, overcame the Tm-22 resistance allele of cultivated tomato varieties and caused severe damage to crops. In this study, we determined the role of invasive weed species as potential hosts of ToBRFV and a mild strain of pepino mosaic virus (PepMV-IL). Of newly tested weed species, only the invasive species Solanum elaeagnifolium and S. rostratum, sap inoculated with ToBRFV, were susceptible to ToBRFV infection. S. rostratum was also susceptible to PepMV-IL infection. No phenotype was observed on ToBRFV-infected S. elaeagnifolium grown in the wild or following ToBRFV sap inoculation. S. rostratum plants inoculated with ToBRFV contained a high ToBRFV titer compared to ToBRFV-infected S. elaeagnifolium plants. Mixed infection with ToBRFV and PepMV-IL of S. rostratum plants, as well as S. nigrum plants (a known host of ToBRFV and PepMV), displayed synergism between the two viruses, manifested by increasing PepMV-IL levels. Additionally, when inoculated with either ToBRFV or PepMV-IL, disease symptoms were apparent in S. rostratum plants and the symptoms were exacerbated upon mixed infections with both viruses. In a bioassay, ToBRFV-inoculated S. elaeagnifolium, S. rostratum and S. nigrum plants infected tomato plants harboring the Tm-22 resistant allele with ToBRFV. The distribution and abundance of these Solanaceae species increase the risks of virus transmission between species.
Collapse
Affiliation(s)
- Maor Matzrafi
- Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, Agricultural Research Organization (ARO)–Volcani Institute, Ramat Yishay, Israel
- * E-mail:
| | - Jackline Abu-Nassar
- Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, Agricultural Research Organization (ARO)–Volcani Institute, Ramat Yishay, Israel
| | - Chen Klap
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)–Volcani Institute, Rishon LeZion, Israel
| | - Meital Shtarkman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)–Volcani Institute, Rishon LeZion, Israel
| | - Elisheva Smith
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)–Volcani Institute, Rishon LeZion, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)–Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
2
|
Nishiguchi M, Ali ME, Kaya T, Kobayashi K. Plant virus disease control by vaccination and transgenic approaches: Current status and perspective. PLANT RNA VIRUSES 2023:373-424. [DOI: 10.1016/b978-0-323-95339-9.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Córdoba L, Ruiz-Padilla A, Rodríguez-Romero J, Ayllón MA. Construction and Characterization of a Botrytis Virus F Infectious Clone. J Fungi (Basel) 2022; 8:jof8050459. [PMID: 35628716 PMCID: PMC9146958 DOI: 10.3390/jof8050459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Botrytis virus F (BVF) is a positive-sense, single-stranded RNA (+ssRNA) virus within the Gammaflexiviridae family of the plant-pathogenic fungus Botrytis cinerea. In this study, the complete sequence of a BVF strain isolated from B. cinerea collected from grapevine fields in Spain was analyzed. This virus, in this work BVF-V448, has a genome of 6827 nt in length, excluding the poly(A) tail, with two open reading frames encoding an RNA dependent RNA polymerase (RdRP) and a coat protein (CP). The 5′- and 3′-terminal regions of the genome were determined by rapid amplification of cDNA ends (RACE). Furthermore, a yet undetected subgenomic RNA species in BVF-V448 was identified, indicating that the CP is expressed via 3′ coterminal subgenomic RNAs (sgRNAs). We also report the successful construction of the first BVF full-length cDNA clone and synthesized in vitro RNA transcripts using the T7 polymerase, which could efficiently transfect two different strains of B. cinerea, B05.10 and Pi258.9. The levels of growth in culture and virulence on plants of BVF-V448 transfected strains were comparable to BVF-free strains. The infectious clones generated in this work provide a useful tool for the future development of an efficient BVF foreign gene expression vector and a virus-induced gene silencing (VIGS) vector as a biological agent for the control of B. cinerea.
Collapse
Affiliation(s)
- Laura Córdoba
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
| | - Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
| | - Julio Rodríguez-Romero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - María A. Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
4
|
Klap C, Luria N, Smith E, Hadad L, Bakelman E, Sela N, Belausov E, Lachman O, Leibman D, Dombrovsky A. Tomato Brown Rugose Fruit Virus Contributes to Enhanced Pepino Mosaic Virus Titers in Tomato Plants. Viruses 2020; 12:v12080879. [PMID: 32796777 PMCID: PMC7472245 DOI: 10.3390/v12080879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The tobamovirus tomato brown rugose fruit virus (ToBRFV), a major threat to tomato production worldwide, has recently been documented in mixed infections with the potexvirus pepino mosaic virus (PepMV) CH2 strain in traded tomatoes in Israel. A study of greenhouse tomato plants in Israel revealed severe new viral disease symptoms including open unripe fruits and yellow patched leaves. PepMV was only detected in mixed infections with ToBRFV in all 104 tested sites, using serological and molecular analyses. Six PepMV isolates were identified, all had predicted amino acids characteristic of CH2 mild strains excluding an isoleucine at amino acid position 995 of the replicase. High-throughput sequencing of viral RNA extracted from four selected symptomatic plants showed solely the ToBRFV and PepMV, with total aligned read ratios of 40.61% and 11.73%, respectively, indicating prevalence of the viruses. Analyses of interactions between the co-infecting viruses by sequential and mixed viral inoculations of tomato plants, at various temperatures, showed a prominent increase in PepMV titers in ToBRFV pre-inoculated plants and in mixed-infected plants at 18–25 °C, compared to PepMV-single inoculations, as analyzed by Western blot and quantitative RT-PCR tests. These results suggest that Israeli mild PepMV isolate infections, preceded by ToBRFV, could induce symptoms characteristic of PepMV aggressive strains.
Collapse
Affiliation(s)
- Chen Klap
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Elisheva Smith
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Lior Hadad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Elena Bakelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel;
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
- Correspondence: ; Tel.: +972-3-968-3579; Fax: +972-3-968-6543
| |
Collapse
|
5
|
The Potential Risk of Plant-Virus Disease Initiation by Infected Tomatoes. PLANTS 2020; 9:plants9050623. [PMID: 32422863 PMCID: PMC7285381 DOI: 10.3390/plants9050623] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022]
Abstract
During 2019, tomato fruits showing viral-like symptoms of marbled yellow spots were abundant in Israel. The new symptoms were distinctive from those typical of tomato brown rugose fruit virus (ToBRFV) infection but resembled symptoms of pepino mosaic virus (PepMV) infection. RT-PCR analysis and the serological tests (enzyme linked immunosorbent assay, western blot and in situ immunofluorescence) revealed and confirmed the presence of both the tobamovirus ToBRFV and the potexvirus PepMV in the symptomatic fruits. A mixture of rod-like and filamentous particles, characteristic of viruses belonging to tobamovirus and potexvirus genera, was visualized by transmission electron microscopy of the tomato fruit viral extract. Sanger sequencing of amplified PepMV-coat protein gene segments showed ~98% sequence identity to the Chilean (CH2)-strain. In a biological assay testing the contribution of traded infected tomatoes to the establishment of tomato plant disease, we applied direct and indirect inoculation modes using Tm-22-resistant tomato plants. The results, assessed by disease symptom development along with serological and molecular analyses, showed that the ToBRFV and PepMV co-infected fruits were an effective inoculum source for disease spread only when fruits were damaged. Importantly, intact fruits did not spread the viral disease. These results added a new factor to disease epidemiology of these viruses.
Collapse
|
6
|
Agüero J, Gómez-Aix C, Sempere RN, García-Villalba J, García-Núñez J, Hernando Y, Aranda MA. Stable and Broad Spectrum Cross-Protection Against Pepino Mosaic Virus Attained by Mixed Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1810. [PMID: 30574159 PMCID: PMC6291676 DOI: 10.3389/fpls.2018.01810] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/21/2018] [Indexed: 05/29/2023]
Abstract
While recent pepino mosaic virus (PepMV; species Pepino mosaic virus, genus Potexvirus, family Alphaflexiviridae) epidemics seem to be predominantly caused by isolates of the CH2 strain, PepMV epidemics in intensive tomato crops in Spain are caused by both CH2 and EU isolates that co-circulate, representing a challenge in terms of control, including cross-protection. In this work, we hypothesized that mixed infections with two mild isolates of the EU and CH2 strains (PepMV-Sp13 and -PS5, respectively) may be useful in PepMV cross-protection in Spanish epidemics, providing protection against a broad range of aggressive isolates. Thus, we performed a range of field trials and an experimental evolution assay to determine the phenotypic and genetic stability of PepMV-Sp13 and -PS5 mixed infections, as well as their cross-protective efficiency. Our results showed that: (i) the phenotype of PepMV-Sp13 and -PS5 mixed infections was mild and did not change significantly when infecting different tomato cultivars or under different environmental conditions in Spain, (ii) PepMV-Sp13 and -PS5 mixed infections provided more efficient protection against two aggressive EU and CH2 isolates than single infections, and (iii) PepMV-Sp13 and -PS5, either in single or in mixed infections, were less variable than other two PepMV isolates occurring naturally in PepMV epidemics in Spain.
Collapse
Affiliation(s)
| | | | | | | | - Jorge García-Núñez
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | | | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| |
Collapse
|
7
|
Sempere RN, Gómez-Aix C, Ruíz-Ramón F, Gómez P, Hasiów-Jaroszewska B, Sánchez-Pina MA, Aranda MA. Pepino mosaic virus RNA-Dependent RNA Polymerase POL Domain Is a Hypersensitive Response-Like Elicitor Shared by Necrotic and Mild Isolates. PHYTOPATHOLOGY 2016; 106:395-406. [PMID: 26667188 DOI: 10.1094/phyto-10-15-0277-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Systemic necrosis both in tomato and Nicotiana benthamiana shared hypersensitive response (HR) features, allowing the assessment of the role of different genomic regions on necrosis induction. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Our results also indicated that the necrosis-eliciting activity of POL resides in its highly conserved "palm" domain, and that necrosis was jasmonic acid-dependent but not salicylic acid-dependent. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions.
Collapse
Affiliation(s)
- Raquel N Sempere
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Cristina Gómez-Aix
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Fabiola Ruíz-Ramón
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Pedro Gómez
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Beata Hasiów-Jaroszewska
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - María Amelia Sánchez-Pina
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Miguel A Aranda
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| |
Collapse
|
8
|
Minicka J, Otulak K, Garbaczewska G, Pospieszny H, Hasiów-Jaroszewska B. Ultrastructural insights into tomato infections caused by three different pathotypes of Pepino mosaic virus and immunolocalization of viral coat proteins. Micron 2015; 79:84-92. [PMID: 26369497 DOI: 10.1016/j.micron.2015.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 02/05/2023]
Abstract
This paper presents studies on an ultrastructural analysis of plant tissue infected with different pathotypes of Pepino mosaic virus (PepMV) and the immunolocalization of viral coat proteins. Because the PepMV virus replicates with a high mutation rate and exhibits significant genetic diversity, therefore, isolates of PepMV display a wide range of symptoms on infected plants. In this work, tomato plants of the Beta Lux cultivar were inoculated mechanically with three pathotypes representing the Chilean 2 (CH2) genotype: mild (PepMV-P22), necrotic (PepMV-P19) and yellowing (PepMV-P5-IY). The presence of viral particles in all infected plants in the different compartments of various cell types (i.e. spongy and palisade mesophyll, sieve elements and xylem vessels) was revealed via ultrastructural analyses. For the first time, it was possible to demonstrate the presence of crystalline inclusions, composed of virus-like particles. In the later stage of PepMV infection (14 dpi) various pathotype-dependent changes in the structure of the individual organelles (i.e. mitochondria, chloroplasts) were found. The strongest immunogold labeling of the viral coat proteins was also observed in plants infected by necrotic isolates. A large number of viral coat proteins were marked in the plant conductive elements, both xylem and phloem.
Collapse
Affiliation(s)
- Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection - National Research Institute, Wl. Wegorka 20, 60-318 Poznan, Poland
| | - Katarzyna Otulak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Grażyna Garbaczewska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Henryk Pospieszny
- Department of Virology and Bacteriology, Institute of Plant Protection - National Research Institute, Wl. Wegorka 20, 60-318 Poznan, Poland
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection - National Research Institute, Wl. Wegorka 20, 60-318 Poznan, Poland.
| |
Collapse
|
9
|
Duff-Farrier CRA, Bailey AM, Boonham N, Foster GD. A pathogenicity determinant maps to the N-terminal coat protein region of the Pepino mosaic virus genome. MOLECULAR PLANT PATHOLOGY 2015; 16:308-15. [PMID: 25131553 PMCID: PMC6638494 DOI: 10.1111/mpp.12184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pepino mosaic virus (PepMV) poses a worldwide threat to the tomato industry. Considerable differences at the genetic level allow for the distinction of four main genotypic clusters; however, the basis of the phenotypic outcome is difficult to elucidate. This work reports the generation of wild-type PepMV infectious clones of both EU (mild) and CH2 (aggressive) genotypes, from which chimeric infectious clones were created. Phenotypic analysis in three solanaceous hosts, Nicotiana benthamiana, Datura stramonium and Solanum lycopersicum, indicated that a PepMV pathogenicity determinant mapped to the 3'-terminal region of the genome. Increased aggression was only observed in N. benthamiana, showing that this factor is host specific. The determinant was localized to amino acids 11-26 of the N-terminal coat protein (CP) region; this is the first report of this region functioning as a virulence factor in PepMV.
Collapse
Affiliation(s)
- Celia R A Duff-Farrier
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | | | | | | |
Collapse
|
10
|
Hasiów-Jaroszewska B, Paeleman A, Ortega-Parra N, Borodynko N, Minicka J, Czerwoniec A, Thomma BPHJ, Hanssen IM. Ratio of mutated versus wild-type coat protein sequences in Pepino mosaic virus determines the nature and severity of yellowing symptoms on tomato plants. MOLECULAR PLANT PATHOLOGY 2013; 14:923-33. [PMID: 23855964 PMCID: PMC6638792 DOI: 10.1111/mpp.12059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recently, Pepino mosaic virus (PepMV) infections causing severe yellowing symptoms in tomato plants have been reported in glasshouse tomato crops. When studying this phenomenon in commercial glasshouses, two different types of yellowing symptoms, occurring in adjacent plants, were distinguished: interveinal leaf yellowing and yellow mosaics. After several weeks, the interveinal leaf yellowing symptoms gradually disappeared and the plant heads became green again, with yellow mosaic patterns on the leaves as an intermediate stage. The sequencing of multiple isolates causing interveinal leaf yellowing identified two point mutations, occurring in positions 155 and 166 of the coat protein (CP), as unique to the yellowing pathotype. Site-directed mutagenesis of infectious clones confirmed that both CP mutations are determinants of the interveinal leaf yellowing symptoms. Sequencing of CP clones from plants or plant parts with the yellow mosaic symptoms resulted in a mixture of wild-type and mutated sequences, whereas sequencing of CP clones from the green heads of recovered plants resulted in only wild-type sequences. Yellow mosaic symptoms could be reproduced by inoculation of an artificial 1:1 mixture of RNA transcripts from the wild-type and mutated infectious clones. These results show that the ratio of mutated versus wild-type sequences can determine the nature and severity of symptom development. The gradual recovery of the plants, which coincides with the disappearance of the yellowing mutations, suggests that selection pressure acts to the advantage of the wild-type virus. Experiments with wild-type and mutated infectious clones showed that reverse mutation events from mutant to wild-type occur and that the wild-type virus does not have a replicative advantage over the mutant. These results suggest that reverse mutation events occur, with subsequent selection pressure acting in favour of the wild-type virus in the growing plant parts, possibly related to a lower long-distance movement efficiency of the mutant.
Collapse
Affiliation(s)
- Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, ul. Władysława Węgorka 20, 60-318, Poznań, Poland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mathioudakis MM, Veiga RSL, Canto T, Medina V, Mossialos D, Makris AM, Livieratos I. Pepino mosaic virus triple gene block protein 1 (TGBp1) interacts with and increases tomato catalase 1 activity to enhance virus accumulation. MOLECULAR PLANT PATHOLOGY 2013; 14:589-601. [PMID: 23634807 PMCID: PMC6638622 DOI: 10.1111/mpp.12034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Various plant factors are co-opted by virus elements (RNA, proteins) and have been shown to act in pathways affecting virus accumulation and plant defence. Here, an interaction between Pepino mosaic virus (PepMV) triple gene block protein 1 (TGBp1; p26) and tomato catalase 1 (CAT1), a crucial enzyme in the decomposition of toxic hydrogen peroxide (H₂O₂), was identified using the yeast two-hybrid assay, and confirmed via an in vitro pull-down assay and bimolecular fluorescent complementation (BiFC) in planta. Each protein was independently localized within loci in the cytoplasm and nuclei, sites at which their interaction had been visualized by BiFC. Following PepMV inoculation, CAT mRNA and protein levels in leaves were unaltered at 0, 3 and 6 days (locally) and 8 days (systemically) post-inoculation; however, leaf extracts from the last two time points contained increased CAT activity and lower H₂O₂ evels. Overexpression of PepMV p26 in vitro and in planta conferred the same effect, suggesting an additional involvement of TGBp1 in potexvirus pathogenesis. The accumulation of PepMV genomic and subgenomic RNAs and the expression of viral coat protein in noninoculated (systemic) leaves were reduced significantly in CAT-silenced plants. It is postulated that, during PepMV infection, a p26-CAT1 interaction increases H₂O₂ cavenging, thus acting as a negative regulator of plant defence mechanisms to promote PepMV infections.
Collapse
Affiliation(s)
- Matthaios M Mathioudakis
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepio, Chania 73100, Greece
| | | | | | | | | | | | | |
Collapse
|
12
|
Gómez P, Sempere R, Aranda MA. Pepino mosaic virus and Tomato torrado virus: two emerging viruses affecting tomato crops in the Mediterranean basin. Adv Virus Res 2012; 84:505-32. [PMID: 22682177 DOI: 10.1016/b978-0-12-394314-9.00014-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular biology, epidemiology, and evolutionary dynamics of Pepino mosaic virus (PepMV) are much better understood than those of Tomato torrado virus (ToTV). The earliest descriptions of PepMV suggest a recent jump from nontomato species (e.g., pepino; Solanum muricatum) to tomato (Solanum lycopersicum). Its stability in contaminated plant tissues, its transmission through seeds, and the global trade of tomato seeds and fruits may have facilitated the global spread of PepMV. Stability and seed transmission also probably account for the devastating epidemics caused by already-established PepMV strains, although additional contributing factors may include the efficient transmission of PepMV by contact and the often-inconspicuous symptoms in vegetative tomato tissues. The genetic variability of PepMV is likely to have promoted the first phase of emergence (i.e., the species jump) and it continues to play an important role as the virus becomes more pervasive, progressing from regional outbreaks to pandemics. In contrast, the long-term progression of ToTV outbreaks is not yet clear and this may reflect factors such as the limited accumulation of the virus in infected plants, which has been shown to be approximately two orders of magnitude less than PepMV. The efficient dispersion of ToTV may therefore depend on dense populations of its principal vectors, Bemisia tabaci and Trialeurodes vaporariorum, as has been proposed for the necrogenic satellite RNA of Cucumber mosaic virus.
Collapse
Affiliation(s)
- Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura-CEBAS, Consejo Superior de Investigaciones Científicas-CSIC, Campus Universitario de Espinardo, Espinardo, Murcia, Spain
| | | | | |
Collapse
|