1
|
Zhang AL, Hao M, Shi Z, Gao Z, Xu Y, Liu Z. Combining Thermotherapy with Shoot Tip Culture or Cryotherapy for Improved Virus Eradication from In Vitro Actinidia macrosperma. PLANT DISEASE 2024; 108:3072-3077. [PMID: 38853335 DOI: 10.1094/pdis-03-24-0546-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In recent years, kiwifruit viral diseases have become increasingly prevalent in kiwifruit-producing regions of China, significantly impacting both the yield and quality of kiwifruit. This has emerged as a significant constraint on the healthy and sustainable development of the kiwifruit industry. The use of virus-free propagation materials has been proven the most effective strategy for controlling plant viral diseases. In the present study, shoot tip culture, shoot tip cryotherapy, and their combinations with thermotherapy were established to eradicate Actinidia virus A (AcVA), Actinidia virus B (AcVB), and Actinidia chlorotic ringspot-associated virus (AcCRaV) from Actinidia macrosperma. Additionally, the impact of shoot tip size on virus eradication was evaluated. Among the three confirmed viruses, regardless of the procedure, AcVB was the easiest to eradicate, followed by AcVA and AcCRaV. Combining thermotherapy with shoot tip culture or cryotherapy resulted in a higher virus-free frequency (up to 27.3 and 50%, respectively) than shoot tip culture or cryotherapy alone (0 to 20%). Notably, the combination of thermotherapy and 0.5- to 1-mm shoot tip cryotherapy was shown to be the most effective protocol for virus eradication from A. macrosperma, which produced 50% of regenerated shoots free from all the tested viruses. To the best of our knowledge, this is the first report on virus elimination from kiwifruit infected with multiple viruses based on conventional shoot tip culture and shoot tip cryotherapy.
Collapse
Affiliation(s)
- A-Ling Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Yangling 712100, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxing Hao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhimin Shi
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhixiong Gao
- Yangling Molo Ecological Agriculture Co., Ltd., Yangling 712100, Shaanxi, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Yangling 712100, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Zhang AL, Shi X, Xie C, Yu F, Gao Z, Xu Y, Liu Z. Rapid and Visual Detection of Actinidia Chlorotic Ringspot-Associated Virus Using One-Step Reverse-Transcription Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick Assay. PLANT DISEASE 2023; 107:3701-3707. [PMID: 37467124 DOI: 10.1094/pdis-02-23-0270-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Actinidia chlorotic ringspot-associated virus (AcCRaV) occurs widely in major kiwifruit producing areas of China and is often accompanied by coinfecting viruses, affecting the growth, yield, and quality of kiwifruit. Therefore, a rapid and sensitive detection method is crucial for diagnosing and developing effective AcCRaV management strategies. In this study, a one-step reverse-transcription recombinase polymerase amplification combined with a lateral flow dipstick (RT-RPA-LFD) assay was developed for rapid detection of AcCRaV. Specific primers and a probe were designed based on the conserved region of the coat protein gene sequence of AcCRaV. The one-step RT-RPA reaction can be performed at 35 and 40°C within 10 to 30 min, and the amplification results can be read directly on the LFD within 5 min. The detection limit of the one-step RT-RPA-LFD assay was 10-8 ng (about 20 viral copies), which was equal with one-step RT-qPCR and 100 times more sensitive than one-step RT-PCR. Moreover, the one-step RT-RPA-LFD assay was successfully applied to detect AcCRaV from crude extracts, and the entire detection process can be completed within 40 min. These results indicate that the RT-RPA-LFD assay is a simple, rapid, and sensitive strategy that can be used for accurate diagnosis of AcCRaV-infected kiwifruit plants in the field. To our knowledge, this is the first study applying the one-step RT-RPA-LFD assay to detect a kiwifruit virus.
Collapse
Affiliation(s)
- A-Ling Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xia Shi
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cuijuan Xie
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feng Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhixiong Gao
- Yangling Molo Ecological Agriculture Co., Ltd, Yangling 712100, Shaanxi, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Zhao L, Wang J, Sujata S, Sun J, Wang Y, Hou C, Cao M, Wu Y. Viromics Reveals the Viral Diversity in Cultivated and Wild Kiwifruit. PLANT DISEASE 2022; 106:3120-3126. [PMID: 35522957 DOI: 10.1094/pdis-03-22-0669-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
China, the center of origin of kiwifruit, has the largest kiwifruit cultivation and production area worldwide, and Shaanxi Province is the major kiwifruit-growing region in China. However, our knowledge of kiwifruit viruses is largely skewed toward their pathology in cultivated orchards, and little is known about viral diversity in wild kiwifruit. To determine the viral diversity in cultivated and wild kiwifruit, 32 cultivated kiwifruit samples from Shaanxi Province and 30 wild kiwifruit samples from the Qinling Mountains were collected and subjected to high-throughput sequencing in this study. Eleven known viruses were found among the 32 cultivated kiwifruit samples, and 8 known viruses and 2 new viruses were found among the 30 wild kiwifruit samples. One of the two new viruses, Actinidia yellowing virus 3 (AcYV3), a member of the genus Idaeovirus, may be associated with severe yellowing of kiwifruit leaves. In addition, more than 50 nearly full-length genome sequences of known viruses were obtained. The detection rates, recombination, and molecular variation of these viruses were further analyzed. The results obtained in this study provide valuable information for understanding the virome of cultivated and wild kiwifruit.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shrestha Sujata
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaxiu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yicheng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Caiting Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Occurrence and Molecular Variability of the Main Kiwifruit Viruses in the Sichuan Province of China. Viruses 2022; 14:v14112460. [PMID: 36366558 PMCID: PMC9696399 DOI: 10.3390/v14112460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Viruses cause important yield losses in kiwifruit. Here, we studied the occurrence and population structure of the major kiwifruit viruses in the Sichuan province of China. RT-PCR results showed the presence of Actinidia virus A (AcVA), Actinidia virus B (AcVB), Actinidia chlorotic ringspot-associated virus (AcCRaV), and the cucumber mosaic virus (CMV). AcCRaV was widely distributed, followed by CMV. These two viruses were often detected in co-infection with AcVA and AcVB. The virus detection rate was positively correlated with vine age. Four phylogenetic groups of AcVA and AcVB were identified, with AcVA isolates clustering mainly in subgroup I, and AcVB isolates clustering mainly in subgroups II, III, and IV. All CMV isolates clustered in subgroup II, and AcCRaV isolates clustered in subgroup IA. The genome of AcVA and AcCRaV was under negative selection pressure, while the genome of AcVB and CMV was under positive selection pressure. All the viruses, except AcVB, were in a state of expansion. The full-length genome of the most widely distributed AcCRaV isolate in kiwifruits in the Sichuan province was characterized by sequencing. Unique eight-nucleotide (TTTTTGAT) repeats were found in the 5'-terminal non-coding region of the AcCRaV RNA3 in a possible association with reduced disease symptoms. This is the first study of kiwifruit viruses in Sichuan.
Collapse
|
5
|
Zhang G, Bai B, Xu M, Liu Y, Wu Y, Zhao L. Advances in and Prospects for Actinidia Viruses. PLANT DISEASE 2022; 106:1321-1329. [PMID: 34941370 DOI: 10.1094/pdis-10-21-2270-fe] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Kiwifruit (Actinidia spp.) is an economically important fruit crop worldwide. Before 2010, kiwifruit viruses had not received much attention; since then, more than 20 viruses infecting kiwifruit have been discovered. Some of these viruses cause severe yellowing, mosaic, necrosis, ringspots, and other symptoms on leaves, seriously impacting yield and quality. Many of these viruses are widely distributed. This review summarizes recent research advances in the identification, genomic variation, distribution, transmission, detection, incidence, prevention, and control of kiwifruit viruses and proposes directions for future research. Using virus-tested propagation material is the most economical and effective method for controlling kiwifruit viruses.
Collapse
Affiliation(s)
- Guoding Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bixin Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming Xu
- Shaanxi Rural Science and Technology Development Center, Xi'an 710054, Shaanxi, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
6
|
Abstract
In order to breed virus-free plantlets of the kiwifruit cultivar “Guichang,” which belongs to Actinidia deliciosa, in this study, stem segments with buds were used as explants, the establishment of a tissue culture rapid propagation system was carried out, and then the virus status of tissue culture plantlets was detected via the real-time reverse transcription-polymerase chain reaction (RT-qPCR) method. The tissue culture rapid propagation system proved that the contamination and browning rates could be controlled below 20% and the survival rate could be exceeded by 70% when the single bud stem segment of “Guichang” kiwifruit was sterilized with 70% alcohol for 30–60 s and 15% NaClO for 15 min, respectively. Meanwhile, we screened the hormone concentration to get better results, and the appropriate medium for adventitious bud induction was MS + 6-BA (1.0 mg/L) + IBA (0.2 mg/L); for proliferation, it was MS + 6-BA (1.0 mg/L) + IBA (0.1 mg/L); and for rooting, it was 1/2 MS + IBA (0.3 mg/L), and the efficiency of induction, proliferation, and rooting could reach 74.07%, 79.63%, and 85.18%, respectively. In addition, the RT-qPCR results demonstrated that the infection rate of 9 viruses: apple stem grooving virus (ASGV), cucumber mosaic virus (CMV), Actinidia virus X (AVX), cucumber necrosis virus (CNV), ribgrass mosaic virus (RMV), citrus leaf blotch virus (CLBV), Actinidia virus B (AcVB), Pelargonium zonate spot virus (PZSV), and cherry leaf roll virus (CLRV) in the “Guichang” kiwifruit tissue culture plantlets was 0. This study could lay a foundation for the production of “Guichang” kiwifruit tissue culture seedlings, and the medium formula provided in this study was useful for the industrial rapid propagation of “Guichang” plantlets.
Collapse
|
7
|
Zhao L, Cao M, Huang Q, Wang Y, Sun J, Zhang Y, Hou C, Wu Y. Occurrence and Distribution of Actinidia Viruses in Shaanxi Province of China. PLANT DISEASE 2021; 105:929-939. [PMID: 33021917 DOI: 10.1094/pdis-06-20-1190-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Kiwifruit (Actinidia spp.) is an economically important fruit crop globally. China is the largest kiwifruit-growing country in the world, and Shaanxi Province is the major kiwifruit-growing region in China. A systematic survey detected various symptoms in kiwifruit plants grown in a commercial kiwifruit field in Shaanxi Province. Samples were collected from kiwifruit plants showing symptoms and used for virus detection by high-throughput sequencing. In addition to 10 known kiwifruit viruses, three new viruses were detected and tentatively named Actinidia yellowing ringspot virus (AYRSpV), Actinidia yellowing virus 1 (AcYV1), and Actinidia yellowing virus 2 (AcYV2). The genome sequences of the three new viruses and four known viruses were determined. Based on the demarcation criteria of the International Committee on Taxonomy of Viruses, AYRSpV might be a new member of the genus Ilarvirus in the family Bromoviridae, AcYV1 might be a new virus of the genus Waikavirus in the family Secoviridae, and AcYV2 might be a novel virus in the family Tombusviridae. Spherical viral particles were found in the samples infected with AYRSpV, AcYV1, and AcYV2 by transmission electron microscopy. Further analysis showed that all 13 viruses can infect both Actinidia deliciosa and A. chinensis but the incidences of these infections vary among different kiwifruit cultivars in different regions. These results provide valuable information for understanding the virome of kiwifruit in China.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Qianru Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yicheng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaxiu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanle Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Caiting Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Wen S, Wang G, Yang Z, Wang Y, Rao M, Lu Q, Hong N. Next-Generation Sequencing Combined With Conventional Sanger Sequencing Reveals High Molecular Diversity in Actinidia Virus 1 Populations From Kiwifruit Grown in China. Front Microbiol 2020; 11:602039. [PMID: 33391218 PMCID: PMC7774462 DOI: 10.3389/fmicb.2020.602039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023] Open
Abstract
Kiwifruit (Actinidia spp.) is native to China. Viral disease–like symptoms are common on kiwifruit plants. In this study, six libraries prepared from total RNA of leaf samples from 69 kiwifruit plants were subjected to next-generation sequencing (NGS). Actinidia virus 1 (AcV-1), a tentative species in the family Closteroviridae, was discovered in the six libraries. Two full-length and two near-full genome sequences of AcV-1 variants were determined by Sanger sequencing. The genome structure of these Chinese AcV-1 variants was identical to that of isolate K75 and consisted of 12 open reading frames (ORFs). Analyses of these sequences together with the NGS-derived contig sequences revealed high molecular diversity in AcV-1 populations, with the highest sequence variation occurring at ORF1a, ORF2, and ORF3, and the available variants clustered into three phylogenetic clades. For the first time, our study revealed different domain compositions in the viral ORF1a and molecular recombination events among AcV-1 variants. Specific reverse transcriptase–polymerase chain reaction assays disclosed the presence of AcV-1 in plants of four kiwifruit species and unknown Actinidia spp. in seven provinces and one city.
Collapse
Affiliation(s)
- Shaohua Wen
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanxiang Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Rao
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Lu
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
| |
Collapse
|
9
|
Feng X, Lai RL, Gao MX, Chen WG, Wu RJ, Cheng CZ, Chen YT. Characterization and complete genome sequences of two novel variants of the family Closteroviridae from Chinese kiwifruit. PLoS One 2020; 15:e0242362. [PMID: 33227011 PMCID: PMC7682855 DOI: 10.1371/journal.pone.0242362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/01/2020] [Indexed: 11/18/2022] Open
Abstract
Two distinct closterovirus-like genome sequences (termed AdV-1 v1 and v2) were identified in Actinidia chinensis var. deliciosa 'Miliang-1' that had no disease symptoms using high-throughput sequencing. Using overlapping reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends, the genomic sequences of AdV-1 v1 and v2 were confirmed as 17,646 and 18,578 nucleotides in length, respectively. The two complete genomes contained 9 and 15 open reading frames, respectively, coding for proteins having domains typical of Closteroviridae, such as RNA-dependent RNA polymerase (RdRp), heat shock protein 70 homolog (HSP70h) and coat protein (CP). Sequence analysis showed that the amino acid sequences of RdRp, HSP70h, and CP of the two variants exhibited high similarity (> 80%), while their genomic organization was somewhat different. This suggested that the two viral genomes identified here are variants of the family Closteroviridae in a single kiwifruit host. Furthermore, phylogenetic relationship analysis revealed that the two variants had a closer relationship with the unclassified virus Persimmon virus B (PeVB) and Actinidia virus 1 (AcV-1) than with other members of the family Closteroviridae, as did their genomic organization. It is speculated that the two variants, together with PeVB and AcV-1 belong to a new subfamily of Closteroviridae.
Collapse
Affiliation(s)
- Xin Feng
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou, Fujian, China
| | - Rui-lian Lai
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Min-xia Gao
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou, Fujian, China
| | - Wen-guang Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ru-jian Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Chun-zhen Cheng
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail: (YC); (CC)
| | - Yi-ting Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou, Fujian, China
- * E-mail: (YC); (CC)
| |
Collapse
|
10
|
Maree HJ, Blouin AG, Diaz-Lara A, Mostert I, Al Rwahnih M, Candresse T. Status of the current vitivirus taxonomy. Arch Virol 2019; 165:451-458. [PMID: 31845154 DOI: 10.1007/s00705-019-04500-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022]
Abstract
Since the establishment of the genus Vitivirus, several additional viruses have been sequenced and proposed to represent new species of this genus. Currently, the International Committee on Taxonomy of Viruses recognizes 15 vitivirus species. The report of new vitiviruses that fail to completely adhere to the species demarcation criteria, the incorporation of non-vitivirus grapevine viruses in the unofficial "naming system", and the existence of non-grapevine vitiviruses lead to inconsistencies in classification. In this report, we give a brief overview of vitiviruses and use currently available information to clarify the present status of the vitivirus taxonomy.
Collapse
Affiliation(s)
- H J Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
- Citrus Research International, P.O. Box 2201, Matieland, 7602, South Africa.
| | - A G Blouin
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - A Diaz-Lara
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA
| | - I Mostert
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - M Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA
| | - T Candresse
- INRAE, Univ. Bordeaux, UMR BFP, 33882, Villenave d'Ornon Cedex, France
| |
Collapse
|
11
|
Zhao L, Yang W, Zhang Y, Wu Z, Wang QC, Wu Y. Occurrence and Molecular Variability of Kiwifruit Viruses in Actinidia deliciosa 'Xuxiang' in the Shaanxi Province of China. PLANT DISEASE 2019; 103:1309-1318. [PMID: 30907694 DOI: 10.1094/pdis-09-18-1570-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Kiwifruit (Actinidia spp.) is an economically substantial fruit crop with China the main producer. China is the primary source of wild kiwifruit and the largest producer of kiwifruit in terms of both production and planting area, and Shaanxi province is the largest kiwifruit producer in China. Previous studies reported presence of kiwifruit viruses in Actinidia chinensis. In this study, six viruses were identified in kiwifruit 'Xuxiang' (A. deliciosa) in Shaanxi, China. The incidence, distribution, and genetic diversity of these viruses were studied. The results showed that Actinidia virus A (AcVA), Actinidia virus B (AcVB), Actinidia chlorotic ringspot-associated virus (AcCRaV), cucumber mosaic virus (CMV), apple stem grooving virus (ASGV), and potato virus X (PVX) were the main viruses infecting Xuxiang kiwifruit in Shaanxi, China. Incidence of the various viruses with both single and multiple infection varied with different kiwifruit-growing counties. For single virus infection, the highest and the lowest numbers of samples infected were about 22 for AcCRaV and 0 for AcVB in Meixian out of 170 samples, 12 for AcVA and 0 for CMV in Zhouzhi out of 120 samples, 10 for AcVA and 0 for AcVB, AcCRaV, ASGV, PVX, and CMV in Yangling out of 70 samples, and 8 for AcCRaV and CMV and 0 for AcVA, AcVB, ASGV, and PVX in Hanzhong out of 80 samples, respectively. Samples which were multiply infected with two or more viruses were also detected. Analysis of the phylogenetic tree of these viruses showed some genetic variability in the AcVA, AcVB, and AcCRaV isolates of Shaanxi kiwifruit. There was no obvious molecular variation in the coat protein genes of ASGV, CMV, and PVX virus isolates from Shaanxi kiwifruit. The present study is the first large-scale survey of kiwifruit viruses in Shaanxi, China. To our knowledge, this is the first report of PVX infecting kiwifruit and the first report of molecular variability of AcVA, AcVB, and AcCRaV. These results provide important data for studying the genetic evolution of AcVA, AcVB, AcCRaV, ASGV, CMV, and PVX.
Collapse
Affiliation(s)
- Lei Zhao
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi, China
- 2 College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen Yang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi, China
- 2 College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanle Zhang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi, China
- 2 College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhanmin Wu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi, China
- 3 Plant Protection and Quarantine Station of Erdos, Erdos, Inner Mongolia, China
| | - Qiao-Chun Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi, China
- 4 College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yunfeng Wu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi, China
- 2 College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
12
|
Blouin AG, Chooi KM, Warren B, Napier KR, Barrero RA, MacDiarmid RM. Grapevine virus I, a putative new vitivirus detected in co-infection with grapevine virus G in New Zealand. Arch Virol 2018; 163:1371-1374. [DOI: 10.1007/s00705-018-3738-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/23/2017] [Indexed: 02/06/2023]
|
13
|
Identification of a novel vitivirus from grapevines in New Zealand. Arch Virol 2017; 163:281-284. [DOI: 10.1007/s00705-017-3581-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
14
|
Candresse T, Theil S, Faure C, Marais A. Determination of the complete genomic sequence of grapevine virus H, a novel vitivirus infecting grapevine. Arch Virol 2017; 163:277-280. [DOI: 10.1007/s00705-017-3587-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
15
|
Zheng Y, Navarro B, Wang G, Wang Y, Yang Z, Xu W, Zhu C, Wang L, Serio FD, Hong N. Actinidia chlorotic ringspot-associated virus: a novel emaravirus infecting kiwifruit plants. MOLECULAR PLANT PATHOLOGY 2017; 18:569-581. [PMID: 27125218 PMCID: PMC6638214 DOI: 10.1111/mpp.12421] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
By integrating next-generation sequencing (NGS), bioinformatics, electron microscopy and conventional molecular biology tools, a new virus infecting kiwifruit vines has been identified and characterized. Being associated with double-membrane-bound bodies in infected tissues and having a genome composed of RNA segments, each one containing a single open reading frame in negative polarity, this virus shows the typical features of members of the genus Emaravirus. Five genomic RNA segments were identified. Additional molecular signatures in the viral RNAs and in the proteins they encode, together with data from phylogenetic analyses, support the proposal of creating a new species in the genus Emaravirus to classify the novel virus, which is tentatively named Actinidia chlorotic ringspot-associated virus (AcCRaV). Bioassays showed that AcCRaV is mechanically transmissible to Nicotiana benthamiana plants which, in turn, may develop chlorotic spots and ringspots. Field surveys disclosed the presence of AcCRaV in four different species of kiwifruit vines in five different provinces of central and western China, and support the association of the novel virus with symptoms of leaf chlorotic ringspots in Actinidia. Data on the molecular features of small RNAs of 21-24 nucleotides, derived from AcCRaV RNAs targeted by host RNA silencing mechanisms, are also reported, and possible molecular pathways involved in their biogenesis are discussed.
Collapse
Affiliation(s)
- Yazhou Zheng
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Beatriz Navarro
- Institute for Sustainable Plant Protection, CNRBari70126Italy
| | - Guoping Wang
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yanxiang Wang
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Zuokun Yang
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Wenxing Xu
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Chenxi Zhu
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Liping Wang
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | | | - Ni Hong
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
16
|
Marais A, Faure C, Mustafayev E, Candresse T. Characterization of New Isolates of Apricot vein clearing-associated virus and of a New Prunus-Infecting Virus: Evidence for Recombination as a Driving Force in Betaflexiviridae Evolution. PLoS One 2015; 10:e0129469. [PMID: 26086395 PMCID: PMC4472227 DOI: 10.1371/journal.pone.0129469] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/08/2015] [Indexed: 11/26/2022] Open
Abstract
Double stranded RNAs from Prunus samples gathered from various surveys were analyzed by a deep-sequencing approach. Contig annotations revealed the presence of a potential new viral species in an Azerbaijani almond tree (Prunus amygdalus) and its genome sequence was completed. Its genomic organization is similar to that of the recently described Apricot vein clearing associated virus (AVCaV) for which two new isolates were also characterized, in a similar fashion, from two Japanese plums (Prunus salicina) from a French germplasm collection. The amino acid identity values between the four proteins encoded by the genome of the new virus have identity levels with those of AVCaV which fall clearly outside the species demarcation criteria. The new virus should therefore be considered as a new species for which the name of Caucasus prunus virus (CPrV) has been proposed. Phylogenetic relationships and nucleotide comparisons suggested that together with AVCaV, CPrV could define a new genus (proposed name: Prunevirus) in the family Betaflexiviridae. A molecular test targeting both members of the new genus was developed, allowing the detection of additional AVCaV isolates, and therefore extending the known geographical distribution and the host range of AVCaV. Moreover, the phylogenetic trees reconstructed with the amino acid sequences of replicase, movement and coat proteins of representative Betaflexiviridae members suggest that Citrus leaf blotch virus (CLBV, type member of the genus Citrivirus) may have evolved from a recombination event involving a Prunevirus, further highlighting the importance of recombination as a driving force in Betaflexiviridae evolution. The sequences reported in the present manuscript have been deposited in the GenBank database under accession numbers KM507061-KM504070.
Collapse
Affiliation(s)
- Armelle Marais
- INRA, UMR 1332 BFP, Villenave d’Ornon, France
- Université de Bordeaux, UMR 1332 BFP, Villenave d’Ornon, France
- * E-mail:
| | - Chantal Faure
- INRA, UMR 1332 BFP, Villenave d’Ornon, France
- Université de Bordeaux, UMR 1332 BFP, Villenave d’Ornon, France
| | - Eldar Mustafayev
- Genetic Resource Institute of the Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Thierry Candresse
- INRA, UMR 1332 BFP, Villenave d’Ornon, France
- Université de Bordeaux, UMR 1332 BFP, Villenave d’Ornon, France
| |
Collapse
|
17
|
Chavan RR, Blouin AG, Cohen D, Pearson MN. Characterization of the complete genome of a novel citrivirus infecting Actinidia chinensis. Arch Virol 2013; 158:1679-86. [PMID: 23494225 DOI: 10.1007/s00705-013-1654-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
Abstract
A ssRNA virus from kiwifruit (Actinidia spp.) was identified as a member of the family Betaflexiviridae. It was mechanically transmitted to the herbaceous indicators Nicotiana benthamiana, N. clevelandii, N. glutinosa and N. occidentalis. The complete genome was comprised of three ORFs and a 3'poly (A) tail. Phylogenetic analysis of the entire genome indicated it was a novel member of the genus Citrivirus (family Betaflexiviridae). The complete nucleotide sequence differed from that of citrus leaf blotch virus (CLBV) by ~ 26 %. The movement protein (ORF2) and coat protein (ORF3) shared 95-96 % and 90-92 % amino acid sequence identity, respectively, with CLBV. The replicase polyprotein (ORF1) was distinctly different from published CLBV sequences, with 78-79 % amino acid sequence identity, while the 5' UTR and 3' UTR differed from CLBV by 28 % and 29 %, respectively. The sequence differences indicate that the citrivirus from Actinidia is either a divergent strain of CLBV or a member of a new citrivirus species.
Collapse
Affiliation(s)
- Ramesh R Chavan
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|