1
|
Xing F, Gao D, Liu H, Wang H, Habili N, Li S. Molecular characterization and pathogenicity analysis of prunus necrotic ringspot virus isolates from China rose (Rosa chinensis Jacq.). Arch Virol 2020; 165:2479-2486. [PMID: 32772252 DOI: 10.1007/s00705-020-04739-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022]
Abstract
Prunus necrotic ringspot virus (PNRSV) is a viral pathogen with worldwide distribution, infecting many commercial fruit trees and ornamental plants. So far, the correlation between PNRSV infection and China rose mosaic disease has not been studied. Rose mosaic disease is characterized by severe symptoms, including mosaic, line pattern, and ringspot. Six viruses that were potentially associated with mosaic disease, including PNRSV, were tested in China roses. Only PNRSV was detected in China roses showing mosaic disease, and asymptomatic samples tested negative for this virus. This result was confirmed by small RNA sequencing, but rose leaf rosette-associated virus and rose spring dwarf-associated virus were also identified in both samples with mosaic disease and asymptomatic samples. This implied that PNRSV might be associated with China rose mosaic disease. Full genome sequences of two PNRSV isolates were determined, and the RNA1, 2 and 3 segments were found to be 3,332, 2,594 and 1,951 nucleotides (nt) in length, respectively. The three RNA segments shared 88.7-89.1% nt sequence identity in the 3'UTR, while RNA2 and RNA3 shared 98.2-99.4% identity. The higher variability in RNA1 suggests that it might have been under greater selection pressure. Phylogenetic analysis showed that the two PNRSV isolates clustered in group PV-32. Full-length infectious cDNA clones of PNRSV from China rose were constructed and used to agroinfiltrate cucumber seedlings. The inoculated cucumber leaves showed yellowing, chlorotic spots, necrosis, dwarfing, and decline at 23 to 39 days post-inoculation, demonstrating the virulence of the PNRSV isolate from China rose. These data lay a foundation for determining the molecular mechanism of rose mosaic disease caused by PNRSV.
Collapse
Affiliation(s)
- Fei Xing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Dehang Gao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huan Liu
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nuredin Habili
- The Australian Wine Research Institute Waite Precinct, University of Adelaide, Adelaide, 5000, Australia
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
2
|
Whole-Genome Characterization of Prunus necrotic ringspot virus Infecting Sweet Cherry in China. GENOME ANNOUNCEMENTS 2018; 6:6/9/e00060-18. [PMID: 29496825 PMCID: PMC5834323 DOI: 10.1128/genomea.00060-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prunus necrotic ringspot virus (PNRSV) causes yield loss in most cultivated stone fruits, including sweet cherry. Using a small RNA deep-sequencing approach combined with end-genome sequence cloning, we identified the complete genomes of all three PNRSV strands from PNRSV-infected sweet cherry trees and compared them with those of two previously reported isolates.
Collapse
|
3
|
Cui H, Wang A. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection. J Virol 2016; 90:5119-5131. [PMID: 26962227 PMCID: PMC4859702 DOI: 10.1128/jvi.00024-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The potyviral RNA genome encodes two polyproteins that are proteolytically processed by three viral protease domains into 11 mature proteins. Extensive molecular studies have identified functions for the majority of the viral proteins. For example, 6K2, one of the two smallest potyviral proteins, is an integral membrane protein and induces the endoplasmic reticulum (ER)-originated replication vesicles that target the chloroplast for robust viral replication. However, the functional role of 6K1, the other smallest protein, remains uncharacterized. In this study, we developed a series of recombinant full-length viral cDNA clones derived from a Canadian Plum pox virus (PPV) isolate. We found that deletion of any of the short motifs of 6K1 (each of which ranged from 5 to 13 amino acids), most of the 6K1 sequence (but with the conserved sequence of the cleavage sites being retained), or all of the 6K1 sequence in the PPV infectious clone abolished viral replication. The trans expression of 6K1 or the cis expression of a dislocated 6K1 failed to rescue the loss-of-replication phenotype, suggesting the temporal and spatial requirement of 6K1 for viral replication. Disruption of the N- or C-terminal cleavage site of 6K1, which prevented the release of 6K1 from the polyprotein, either partially or completely inhibited viral replication, suggesting the functional importance of the mature 6K1. We further found that green fluorescent protein-tagged 6K1 formed punctate inclusions at the viral early infection stage and colocalized with chloroplast-bound viral replicase elements 6K2 and NIb. Taken together, our results suggest that 6K1 is required for viral replication and is an important viral element of the viral replication complex at the early infection stage. IMPORTANCE Potyviruses account for more than 30% of known plant viruses and consist of many agriculturally important viruses. The genomes of potyviruses encode two polyproteins that are proteolytically processed into 11 mature proteins, with the majority of them having been at least partially functionally characterized. However, the functional role of a small protein named 6K1 remains obscure. In this study, we showed that deletion of 6K1 or a short motif/region of 6K1 in the full-length cDNA clones of plum pox virus abolishes viral replication and that mutation of the N- or C-terminal cleavage sites of 6K1 to prevent its release from the polyprotein greatly attenuates or completely inhibits viral replication, suggesting its important role in potyviral infection. We report that 6K1 forms punctate structures and targets the replication vesicles in PPV-infected plant leaf cells at the early infection stage. Our data reveal that 6K1 is an important viral protein of the potyviral replication complex.
Collapse
Affiliation(s)
- Hongguang Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
4
|
Rapid detection of Prunus necrotic ringspot virus using magnetic nanoparticle-assisted reverse transcription loop-mediated isothermal amplification. J Virol Methods 2014; 208:85-9. [DOI: 10.1016/j.jviromet.2014.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/21/2014] [Accepted: 07/29/2014] [Indexed: 11/21/2022]
|
5
|
Cui H, Hong N, Wang G, Wang A. Genomic segments RNA1 and RNA2 of Prunus necrotic ringspot virus codetermine viral pathogenicity to adapt to alternating natural Prunus hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:515-527. [PMID: 23360459 DOI: 10.1094/mpmi-12-12-0282-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Prunus necrotic ringspot virus (PNRSV) affects Prunus fruit production worldwide. To date, numerous PNRSV isolates with diverse pathological properties have been documented. To study the pathogenicity of PNRSV, which directly or indirectly determines the economic losses of infected fruit trees, we have recently sequenced the complete genome of peach isolate Pch12 and cherry isolate Chr3, belonging to the pathogenically aggressive PV32 group and mild PV96 group, respectively. Here, we constructed the Chr3- and Pch12-derived full-length cDNA clones that were infectious in the experimental host cucumber and their respective natural Prunus hosts. Pch12-derived clones induced much more severe symptoms than Chr3 in cucumber, and the pathogenicity discrepancy between Chr3 and Pch12 was associated with virus accumulation. By reassortment of genomic segments, swapping of partial genomic segments, and site-directed mutagenesis, we identified the 3' terminal nucleotide sequence (1C region) in RNA1 and amino acid K at residue 279 in RNA2-encoded P2 as the severe virulence determinants in Pch12. Gain-of-function experiments demonstrated that both the 1C region and K279 of Pch12 were required for severe virulence and high levels of viral accumulation. Our results suggest that PNRSV RNA1 and RNA2 codetermine viral pathogenicity to adapt to alternating natural Prunus hosts, likely through mediating viral accumulation.
Collapse
Affiliation(s)
- Hongguang Cui
- Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
6
|
Jarocka U, Radecka H, Malinowski T, Michalczuk L, Radecki J. Detection of Prunus Necrotic Ringspot Virus in Plant Extracts with Impedimetric Immunosensor based on Glassy Carbon Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201200470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|