1
|
miR-215 Targeting Novel Genes EREG, NIPAL1 and PTPRU Regulates the Resistance to E.coli F18 in Piglets. Genes (Basel) 2020; 11:genes11091053. [PMID: 32906628 PMCID: PMC7563519 DOI: 10.3390/genes11091053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Abstract
Previous research has revealed that miR-215 might be an important miRNA regulating weaned piglets’ resistance to Escherichia coli (E. coli) F18. In this study, target genes of miR-215 were identified by RNA-seq, bioinformatics analysis and dual luciferase detection. The relationship between target genes and E. coli infection was explored by RNAi technology, combined with E. coli stimulation and enzyme linked immunosorbent assay (ELISA) detection. Molecular regulating mechanisms of target genes expression were analyzed by methylation detection of promoter regions and dual luciferase activity assay of single nucleotide polymorphisms (SNPs) in core promoter regions. The results showed that miR-215 could target EREG, NIPAL1 and PTPRU genes. Expression levels of three genes in porcine intestinal epithelial cells (IPEC-J2) in the RNAi group were significantly lower than those in the negative control pGMLV vector (pGMLV-NC) group after E. coli F18 stimulation, while cytokines levels of TNF-α and IL-1β in the RNAi group were significantly higher than in the pGMLV-NC group. Variant sites in the promoter region of three genes could affect their promoter activities. These results suggested that miR-215 could regulate weaned piglets’ resistance to E. coli F18 by targeting EREG, NIPAL1 and PTPRU genes. This study is the first to annotate new biological functions of EREG, NIPAL1 and PTPRU genes in pigs, and provides a new experimental basis and reference for the research of piglets disease-resistance breeding.
Collapse
|
2
|
Gao Z, Sun L, Dai K, Du Y, Wu S, Bao W. Effects of mutations in porcine miRNA-215 precursor sequences on miRNA-215 regulatory function. Gene 2019; 701:131-138. [PMID: 30905811 DOI: 10.1016/j.gene.2019.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) play an important role in animal growth and disease development, and sequence variation in microRNAs can alter their functions. Herein, we explored the effects of mutations in the miRNA-215 precursor sequence on the miRNA-215 regulatory network and resistance to Escherichia coli (E. coli). Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used to detect sequence variations in Sutai and Meishan pigs. The miR-192 precursor sequence was not mutated, but the miR-215 precursor included an AT insertion mutation at position 6 (start from the first base of the miR-215 precursor) and a C/T mutation at position 43. Wild-type (WT) and mutant miR-215 precursor expression vectors were constructed to investigate the effects of sequence variation on expression of miR-215 and its target genes DLG5 and ALCAM, cytokine levels and E. coli adhesion. Compared with the WT control group, cells harbouring the C/T mutant vector displayed reduced miR-215 expression, increased target gene expression, elevated cytokine levels and rising E. coli adhesion, whereas cells harbouring the AT insertion mutant vector were not significantly changed. The sequence variation in the miRNA-215 precursor may affect the miRNA-215 regulatory network, and alter the stability of intestinal epithelial cells (IPEC-J2 cells) and resistance to E. coli. Our findings provide guidance for future research on the regulatory mechanisms of miR-215 in porcine resistance to E. coli F18, and identifying effective genetic markers against this organism.
Collapse
Affiliation(s)
- Zhongcheng Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Li Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kaiyu Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yulu Du
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu, Yangzhou, 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets. Biosci Rep 2018; 38:BSR20171160. [PMID: 29363554 PMCID: PMC5821941 DOI: 10.1042/bsr20171160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/31/2017] [Accepted: 01/23/2018] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in many cellular processes, including cell proliferation, growth and development, and disease control. Previous study demonstrated that the expression of two highly homologous miRNAs (miR-192 and miR-215) was up-regulated in weaned piglets with Escherichia coli F18 infection. However, the potential molecular mechanism of miR-192 in regulating E. coli infection remains unclear in pigs. In the present study, we analyzed the relationship between level of miR-192 and degree of E. coli resistance using transcription activator-like effector nuclease (TALEN), in vitro bacterial adhesion assays, and target genes research. A TALEN expression vector that specifically recognizes the pig miR-192 was constructed and then monoclonal epithelial cells defective in miR-192 were established. We found that miR-192 knockout led to enhance the adhesion ability of the E. coli strains F18ab, F18ac and K88ac, meanwhile increase the expression of target genes (DLG5 and ALCAM) by qPCR and Western blotting analysis. The results suggested that miR-192 and its key target genes (DLG5 and ALCAM) could have a key role in E. coli infection. Based on our findings, we propose that further investigation of miR-192 function is likely to lead to insights into the molecular mechanisms of E. coli infection.
Collapse
|
4
|
Oh JN, Choi KH, Lee CK. Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:489-498. [PMID: 29268580 PMCID: PMC5838320 DOI: 10.5713/ajas.17.0749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/27/2022]
Abstract
Objective Foot and mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV) and PRRS virus (PRRSV), the present study introduced two genetic modification techniques to porcine cells. Methods First, cluster of differentiation 163 (CD163), the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs) were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7) gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.
Collapse
Affiliation(s)
- Jong-Nam Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Designed Animal and Transplantation Research Institute (DATRI), Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
5
|
Liu F, Du Y, Feng WH. New perspective of host microRNAs in the control of PRRSV infection. Vet Microbiol 2017; 209:48-56. [DOI: 10.1016/j.vetmic.2017.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 02/09/2023]
|
6
|
Wu Z, Qin W, Wu S, Zhu G, Bao W, Wu S. Identification of microRNAs regulating Escherichia coli F18 infection in Meishan weaned piglets. Biol Direct 2016; 11:59. [PMID: 27809935 PMCID: PMC5093996 DOI: 10.1186/s13062-016-0160-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022] Open
Abstract
Background Escherichia coli F18 is mainly responsible for post-weaning diarrhea (PWD) in piglets. The molecular regulation of E. coli F18 resistance in Chinese domestic weaned piglets is still obscure. We used Meishan piglets as model animals to test their susceptibility to E. coli F18. Small RNA duodenal libraries were constructed for E. coli F18-sensitive and -resistant weaned piglets challenged with E. coli F18 and sequenced using Illumina Solexa high-throughput sequencing technology. Results Sequencing results showed that 3,475,231 and 37,198,259 clean reads were obtained, with 311 known miRNAs differently expressed in resistant and sensitive groups, respectively. Twenty-four miRNAs, including 15 up-regulated and 9 down-regulated, demonstrated more than a 2-fold differential expression between the F18-resistant and -sensitive piglets. Stem-loop RT-qPCR showed that miR-136, miR-196b, miR-499-5p and miR-218-3p significantly expressed in intestinal tissue (p < 0.05). KEGG pathway analysis for target genes revealed that differently expressed miRNAs were involved in infectious diseases, signal transduction and immune system pathways. Interestingly, the expression of miR-218-3p in intestinal tissue had a very significant negative correlation with target DLG5 (P < 0.01). Conclusions Based on the expression correlation between miRNA and target genes analysis, we speculate that miR-218-3p targeting to DLG5, appears to be very promising candidate for miRNAs involved in response to E. coli F18 infection. The present study provides improved database information on pig miRNAs, better understanding of the genetic basis of E. coli F18 resistance in local Chinese pig breeds and lays a new foundation for identifying novel markers of E. coli F18 resistance. Reviewers This article was reviewed by Neil R Smalheiser and Weixiong Zhang. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0160-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Weiyun Qin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Seng Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
7
|
Zhu L, Bao L, Zhang X, Xia X, Sun H. Inhibition of porcine reproductive and respiratory syndrome virus replication with exosome-transferred artificial microRNA targeting the 3' untranslated region. J Virol Methods 2015; 223:61-8. [PMID: 26238924 DOI: 10.1016/j.jviromet.2015.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/05/2015] [Accepted: 07/29/2015] [Indexed: 12/30/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important swine disease. As part of the development of RNA interference (RNAi) strategy against the disease, in this study a recombinant adenovirus (rAd) expressing the artificial microRNA (amiRNA) targeting the 3' untranslated region (UTR) was used to investigate the exosome-mediated amiRNA transfer from different pig cell types to porcine alveolar macrophages (PAMs). Quantitative RT-PCR showed that the sequence-specific amiRNA was expressed in and secreted via exosomes from the rAd-transduced pig kidney cell line PK-15, PAM cell line 3D4/163, kidney fibroblast cells (PFCs) and endometrial endothelial cells (PEECs) with different secretion efficiencies. Fluorescent microscopy revealed that the dye-labeled amiRNA-containing exosomes of different cell origins were efficiently taken up by all of the five types of pig cells tested, including primary PAMs. Quantitative RT-PCR showed that the amiRNA-containing exosomes of different cell origins were taken up by primary PAMs in both time- and dose-dependent manners. Both quantitative RT-PCR and viral titration assays showed that the exosome-delivered amiRNA had potent anti-viral effects against three different PRRSV strains. These data suggest that the exosomes derived from pig cells could serve as an efficient miRNA transfer vehicle, and that the exosome-delivered amiRNA had potent anti-viral effects against different PRRSV strains.
Collapse
Affiliation(s)
- Li Zhu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Liping Bao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Zhang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoli Xia
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Huaichang Sun
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
8
|
Zhu L, Song H, Zhang X, Xia X, Sun H. Inhibition of porcine reproductive and respiratory syndrome virus infection by recombinant adenovirus- and/or exosome-delivered the artificial microRNAs targeting sialoadhesin and CD163 receptors. Virol J 2014; 11:225. [PMID: 25522782 PMCID: PMC4279792 DOI: 10.1186/s12985-014-0225-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/10/2014] [Indexed: 01/24/2023] Open
Abstract
Background The current vaccines failed to provide substantial protection against porcine reproductive and respiratory syndrome (PRRS) and the new vaccine development faces great challenges. Sialoadhesin (Sn) and CD163 are the two key receptors for PRRS virus (PRRSV) infection of porcine alveolar macrophages (PAMs), but the artificial microRNA (amiRNA) strategy targeting two viral receptors has not been described. Methods The candidate miRNAs targeting Sn or CD163 receptor were predicted using a web-based miRNA design tool and validated by transfection of cells with each amiRNA expression vector plus the reporter vector. The amiRNA-expressing recombinant adenoviruses (rAds) were generated using AdEasy Adenoviral Vector System. The rAd transduction efficiencies for pig cells were measured by flow cytometry and fluorescent microscopy. The expression and exosome-mediated secretion of amiRNAs were detected by RT-PCR. The knock-down of Sn or CD163 receptor by rAd- and/or exosome-delivered amiRNA was detected by quantitative RT-PCR and flow cytometry. The additive anti-PRRSV effect between the two amiRNAs was detected by quantitative RT-PCR and viral titration. Results All 18 amiRNAs validated were effective against Sn or CD163 receptor mRNA expression. Two rAds expressing Sn- or CD163-targeted amiRNA were generated for further study. The maximal rAd transduction efficiency was 62% for PAMs at MOI 800 or 100% for PK-15 cells at MOI 100. The sequence-specific amiRNAs were expressed efficiently in and secreted from the rAd-transduced cells via exosomes. The expression of Sn and CD163 receptors was inhibited significantly by rAd transduction and/or amiRNA-containing exosome treatment at mRNA and protein levels. Both PRRSV ORF7 copy number and viral titer were reduced significantly by transduction of PAMs with the two rAds and/or by treatment with the two amiRNA-containing exosomes. The additive anti-PRRSV effect between the two amiRNAs was relatively long-lasting (96 h) and effective against three different viral strains. Conclusion These results suggested that Sn- and CD163-targeted amiRNAs had an additive anti-PRRSV effect against different viral strains. Our findings provide new evidence supporting the hypothesis that exosomes can also serve as an efficient small RNA transfer vehicle for pig cells.
Collapse
Affiliation(s)
- Li Zhu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Hongqin Song
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Xinyu Zhang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Xiaoli Xia
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Huaichang Sun
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Inhibition of porcine reproductive and respiratory syndrome virus by specific siRNA targeting Nsp9 gene. INFECTION GENETICS AND EVOLUTION 2014; 28:64-70. [PMID: 25149224 DOI: 10.1016/j.meegid.2014.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/24/2022]
Abstract
To screen siRNAs for effectively inhibiting the replication of porcine reproductive and respiratory syndrome virus (PRRSV). Four pairs of siRNA targeting Nsp9 gene of PRRSV and one non-efficient pair used as control were designed, synthesized and cloned into pSilencer4.1-CMV neo, designated as pSi-294, pSi-367, pSi-409, pSi-1488, pSi-Ctr. The recombinant plasmids were transfected into Marc-145 cells and infected with PRRSV 24h post transfection. Subsequently, IFA, real-time PCR, TCID50 and western blot were used for evaluating the inhibitory effect of the siRNA. IFA and western-blot results showed that pSi-294, pSi-1488 can effectively inhibit the expression of Nsp9 and M protein of PRRSV, real-time PCR result showed that the expression of Nsp9 gene were decreased from 86.56% to 93.66% compared to the negative control. siRNAs can be used as candidates for basic research of PRRSV.
Collapse
|
10
|
Cunha MV, Inácio J, Freimanis G, Fusaro A, Granberg F, Höper D, King DP, Monne I, Orton R, Rosseel T. Next-generation sequencing in veterinary medicine: how can the massive amount of information arising from high-throughput technologies improve diagnosis, control, and management of infectious diseases? Methods Mol Biol 2014; 1247:415-36. [PMID: 25399113 PMCID: PMC7123048 DOI: 10.1007/978-1-4939-2004-4_30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of high-throughput molecular technologies and associated bioinformatics has dramatically changed the capacities of scientists to produce, handle, and analyze large amounts of genomic, transcriptomic, and proteomic data. A clear example of this step-change is represented by the amount of DNA sequence data that can be now produced using next-generation sequencing (NGS) platforms. Similarly, recent improvements in protein and peptide separation efficiencies and highly accurate mass spectrometry have promoted the identification and quantification of proteins in a given sample. These advancements in biotechnology have increasingly been applied to the study of animal infectious diseases and are beginning to revolutionize the way that biological and evolutionary processes can be studied at the molecular level. Studies have demonstrated the value of NGS technologies for molecular characterization, ranging from metagenomic characterization of unknown pathogens or microbial communities to molecular epidemiology and evolution of viral quasispecies. Moreover, high-throughput technologies now allow detailed studies of host-pathogen interactions at the level of their genomes (genomics), transcriptomes (transcriptomics), or proteomes (proteomics). Ultimately, the interaction between pathogen and host biological networks can be questioned by analytically integrating these levels (integrative OMICS and systems biology). The application of high-throughput biotechnology platforms in these fields and their typical low-cost per information content has revolutionized the resolution with which these processes can now be studied. The aim of this chapter is to provide a current and prospective view on the opportunities and challenges associated with the application of massive parallel sequencing technologies to veterinary medicine, with particular focus on applications that have a potential impact on disease control and management.
Collapse
Affiliation(s)
- Mónica V. Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, IP and Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - João Inácio
- Instituto Nacional de Investigação Agrária e Veterinária, IP, Lisboa, Portugal and School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
RNAi-based inhibition of porcine reproductive and respiratory syndrome virus replication in transgenic pigs. J Biotechnol 2013; 171:17-24. [PMID: 24333125 PMCID: PMC7127135 DOI: 10.1016/j.jbiotec.2013.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 11/25/2022]
Abstract
We generated transgenic pig expressing PRRSV-specific siRNA. Stability of siRNA expression was proved in two generations. Type I interferon was not elicited by the expression of siRNA in vivo. We proved that transgenic pigs showed substantially decreased virus load in serum after PRRSV infection.
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease causing heavy losses to the swine industry worldwide. Many studies have shown that transient delivery of small interfering RNA (siRNA) or adenovirus-mediated RNA interfere (RNAi) could potentially inhibit porcine reproductive and respiratory syndrome virus (PRRSV) replication in vivo and in vitro. Here, we applied RNAi to produce transgenic (TG) pigs that constitutively expressed PRRSV-specific siRNA derived from small hairpin RNA (shRNA). First, we evaluated siRNA expression in the founding and F1 generation pigs and confirmed stable transmission. Then, we detected the expression of IFN-β and protein kinase R (PKR) and found no difference among TG, non-transgenic (NTG), and wild-type pigs. Lastly, the F1 generation pigs, including TG and NTG piglets, were challenged with 3 × 104.5 TCID50 of JXA1, a highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). Our results showed that the in vivo siRNA expression substantially reduced the serum HP-PRRSV titers and increased survival time by 3 days when TG pigs were compared with the NTG controls. These data suggested that RNAi-based genetic modification might be used to breed viral-resistant livestock with stable siRNA expression with no complications of siRNA toxicity.
Collapse
|
12
|
Bhomia M, Sharma A, Gayen M, Gupta P, Maheshwari RK. Artificial microRNAs can effectively inhibit replication of Venezuelan equine encephalitis virus. Antiviral Res 2013; 100:429-34. [PMID: 23988697 PMCID: PMC7113778 DOI: 10.1016/j.antiviral.2013.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 11/24/2022]
Abstract
Artificial microRNAs designed against VEEV nsp-4 were found non-toxic in cell culture. VEEV replication was effectively inhibited by all the artificial microRNAs in vitro. Combination of multiple microRNAs in a single expression vector does not increase protective efficacy against VEEV infection.
Venezuelan equine encephalitis virus is a member of the alphavirus family and genus togaviridae. VEEV is highly infectious in aerosol form and has been weaponized in the past making it a potential biothreat agent. At present, there are no FDA approved antiviral treatments or vaccines for VEEV. Artificial microRNAs are small molecules which are expressed through endogenous microRNA machinery by RNA polymerase II. These artificial microRNAs effectively inhibit gene expression and are non-toxic to the host cell. VEEV RNA dependent RNA polymerase (RdRp) is central to VEEV replication. Therefore, we hypothesize that targeted inhibition of VEEV RdRp using artificial microRNAs may efficiently inhibit VEEV replication. Five artificial microRNAs were tested in vitro in BHK cells. Three of these artificial miRNAs showed significant inhibition of VEEV replication. Further, these microRNAs were cloned into the expression vector in combination to see the synergistic effect on VEEV replication. Combination of more than one miRNA did not result in significant inhibition of virus replication. In conclusion, we have shown that RNAi through artificial microRNAs effectively inhibits VEEV replication and is significantly less toxic in comparison to siRNAs.
Collapse
Affiliation(s)
- Manish Bhomia
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | | | | | | | | |
Collapse
|
13
|
Berillo O, Régnier M, Ivashchenko A. Binding of intronic miRNAs to the mRNAs of host genes encoding intronic miRNAs and proteins that participate in tumourigenesis. Comput Biol Med 2013; 43:1374-81. [PMID: 24034728 DOI: 10.1016/j.compbiomed.2013.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 12/28/2022]
Abstract
In this study, we examined 615 host genes encoding 915 in-miRNAs as possible targets for interactions with all in-miRNAs. Host genes whose proteins are involved in esophageal, gastric, small bowel, colorectal, and breast cancer development were studied. Unique in-miRNA binding sites with a significance of p<0.0005 were found in the 5'UTRs, CDSs, and 3'UTRs of the host genes encoding proteins that are key participants in tumourigenesis. These data shed light on the interactions between miRNAs and mRNAs and on the role of candidate proteins in cancer. Therefore, our findings have potential application in the development of diagnostic and treatment methods.
Collapse
Affiliation(s)
- O Berillo
- National nanotechnology laboratory, al-Farabi Kazakh National University, Almaty, Kazakhstan.
| | | | | |
Collapse
|