1
|
Wang S, Dong Z, Zhao L, Zhao Z, Zhang Y. Reverse-transcription recombinase-aided amplification and CRISPR/Cas12a-based universal detection for fast screening and accurate identification of six pospiviroids infecting Solanaceae crops. PEST MANAGEMENT SCIENCE 2024. [PMID: 39387718 DOI: 10.1002/ps.8470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Pospiviroids, members of the genus Pospiviroid, can cause severe diseases in tomato and other Solanaceae crops, causing considerable economic losses worldwide. Six pospiviroids including potato spindle tuber viroid (PSTVd), tomato chlorotic dwarf viroid (TCDVd), tomato planta macho viroid (TPMVd), Columnea latent viroid (CLVd), pepper chat fruit viroid (PCFVd), and tomato apical stunt viroid (TASVd) are regulated in many countries and organizations. Rapid, accurate detection is thus crucial for controlling the spread of these pospiviroids. RESULTS For simultaneous detection of these six pospiviroids, we developed a rapid, visual method that uses a reverse transcription recombinase-aided amplification (RT-RAA) assay coupled with a clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 12a (CRISPR/Cas12a) system. In particular, this technique could achieve both universal detection and specific identification of the six target pospiviroids within 40 min. The universal detection could diagnose the six target pospiviroids in a single reaction, and the specific identification could identify each target pospiviroid without cross-reactivity of other pospiviroids. The sensitivity limits for the target pospiviroids detection with the proposed detection method were higher than those of the conventional reverse transcription-polymerase chain reaction (RT-PCR) method. CONCLUSION We designed an RT-RAA-CRISPR/Cas12a-based universal detection method for both large-scale screening and accurate identification of the six target pospiviroids, which is appropriate for on-site detection. Our study results can aid in performing rapid, large-scale screening of multiple pests simultaneously. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Siyuan Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zheng Dong
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Zhenxing Zhao
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
2
|
Kovalskaya N, Hammond RW. Rapid diagnostic detection of tomato apical stunt viroid based on isothermal reverse transcription-recombinase polymerase amplification. J Virol Methods 2021; 300:114353. [PMID: 34767861 DOI: 10.1016/j.jviromet.2021.114353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022]
Abstract
Tomato apical stunt viroid (TASVd) is a serious threat to tomato plants that can cause a considerable yield loss. In the present study, two isothermal molecular diagnostic assays based on reverse transcription-recombinase polymerase amplification (RT-RPA) utilizing the AmplifyRP® platform for plant pathogen detection were developed. The results of this research demonstrated distinct specificity of both developed assays, AmplifyRP® Acceler8™ and AmplifyRP® XRT, expressed in the absence of any cross-reaction activity to all total RNA extracts obtained from plants infected with other pospiviroids. The RT-RPA assays detected viroid RNA in 81- and 27-fold dilutions of the original TASVd-infected crude extract for AmplifyRP® Acceler8™ and AmplifyRP® XRT, respectively. The sensitivity tests in serial water dilutions showed the ability of AmplifyRP® Acceler8™ and AmplifyRP® XRT to detect 8 and 80 fg of pure TASVd RNA transcript, respectively. The influence of crude extract on viroid RNA transcript detection was also examined and a decrease of sensitivity of approximately 100-fold for both RT-RPA assays was revealed. To our knowledge, this is the first report describing development of RT-RPA assays to detect TASVd in plants using the AmplifyRP® platform that can be further employed both in laboratory conditions and in the field for on-site diagnosis.
Collapse
Affiliation(s)
- Natalia Kovalskaya
- ORISE-USDA ARS USNA Floral and Nursery Plant Research Unit, 10300 Baltimore Ave, Bldg. 004, Rm. 211, Beltsville, MD, 20705, USA.
| | - Rosemarie W Hammond
- USDA ARS Molecular Plant Pathology Laboratory, 10300 Baltimore Ave, Bldg. 004, Rm. 214, Beltsville, MD, 20705, USA.
| |
Collapse
|
3
|
Reassessment of the Columnea latent viroid (CLVd) Taxonomic Classification. Microorganisms 2021; 9:microorganisms9061117. [PMID: 34064131 PMCID: PMC8224301 DOI: 10.3390/microorganisms9061117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
Columnea latent viroid (CLVd) is a member of the Pospiviroid family and its naked circular RNA genome typically forms native “rod-like” secondary structures. In this work, the CLVd taxonomy was reevaluated based on sequence similarity and phylogenetic analysis, as well as the evaluation of the symptom development and disease severity of four selected CLVd isolates in a range of host species. The phylogenetic analysis showed that all CLVd isolates were clustered into five distinct clades: (I) severe isolates originally found in tomato crops in Thailand, (II) ornamental isolates, (III) mild isolates originally found in tomato crops in Thailand, and two clades (IV and V) containing mild isolates originating mainly from tomato crops in European countries, with different virulence levels on several hosts. Our analysis demonstrated that some CLVd isolates have a sequence similarity of less than 90% within the species taxon, as well as distinct biological characteristics (symptom development and virulence), both of which are important ICTV criteria for viroid classification. For these reasons, we propose that CLVd should be re-classified into at least three main taxonomic lineages: a “CLVd-tomato Asian lineage” (I), a “CLVd-tomato European lineage” (IV) and a “CLVd-ornamental European lineage” (II), plus two minor lineages (III and V), fitting the ICTV criteria.
Collapse
|
4
|
Alvarez-Díaz JC, Ortiz-Echeverry BA, Velásquez N. Duplex RT-PCR assay for simultaneous detection of TSWV and CSVd in chrysanthemum. J Virol Methods 2018; 266:41-48. [PMID: 30578896 DOI: 10.1016/j.jviromet.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
A novel duplex RT-PCR assay for simultaneous detection of TSWV and CSVd in chrysanthemums was developed. Previous reported primers for amplification of TSWV and CSVd were used and a novel pair of primers for CSVd was designed to improve duplex amplification compatibility. Sensitivity and efficiency of the previous reported and novel primers for CSVd were assessed. Then, the sensitivity of the combined primers to amplify both TSWV and CSVd cDNA were also evaluated. Both TSWV and CSVd were detected in preparations diluted up to 10-4 and 10-5 respectively, from total RNA extracts. This duplex RT-PCR method showed an estimated diagnostic sensitivity (DSe) of 97% and diagnostic specificity (DSp) of 99%. For combination of the primers TSWV L1/ L2 and CSVd UCO-1 F/ UCO-1R, the protocol could detect pathogen RNA from naturally infected plants until 0.1 ng and 1 ng respectively. This novel protocol for detection of TSWV/CSVd represents a useful diagnostic tool without the need of expensive probes and less extensive laboratory work. This method could be helpful to assist the selection and further propagation of healthy chrysanthemums on the field as well as to understand the dynamics and the interaction of this virus and viroid within farms.
Collapse
Affiliation(s)
- Juan C Alvarez-Díaz
- Departamento de Investigación y desarrollo, Universidad Católica de Oriente, Sector 3, cra. 46 No. 40B 50, Rionegro, Colombia.
| | - Bianor A Ortiz-Echeverry
- Departamento de Investigación y desarrollo, Universidad Católica de Oriente, Sector 3, cra. 46 No. 40B 50, Rionegro, Colombia
| | - Nubia Velásquez
- Departamento de Investigación y desarrollo, Universidad Católica de Oriente, Sector 3, cra. 46 No. 40B 50, Rionegro, Colombia
| |
Collapse
|
5
|
Thibaut O, Claude B. Innate Immunity Activation and RNAi Interplay in Citrus Exocortis Viroid-Tomato Pathosystem. Viruses 2018; 10:E587. [PMID: 30373191 PMCID: PMC6266551 DOI: 10.3390/v10110587] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Although viroids are the smallest and simplest plant pathogens known, the molecular mechanisms underlying their pathogenesis remain unclear. To unravel these mechanisms, a dual approach was implemented consisting of in silico identification of potential tomato silencing targets of pospiviroids, and the experimental validation of these targets through the sequencing of small RNAs and RNA ends extracted from tomatoes infected with a severe isolate of Citrus exocortis viroid (CEVd). The generated RNA ends were also used to monitor the differentially-expressed genes. These analyses showed that when CEVd symptoms are well established: (i) CEVd are degraded by at least three Dicer-like (DCL) proteins and possibly by RNA-induced silencing complex (RISC), (ii) five different mRNAs are partially degraded through post-transcriptional gene silencing (PTGS), including argonaute 2a, which is further degraded in phasiRNAs, (iii) Dicer-like 2b and 2d are both upregulated and degraded in phasiRNAs, and (iv) CEVd infection induced a significant shift in gene expression allowing to explain the usual symptoms of pospiviroids on tomato and to demonstrate the constant activation of host innate immunity and systemic acquired resistance (SAR) by these pathogenic RNAs. Finally, based on in silico analysis, potential immunity receptor candidates of viroid-derived RNAs are suggested.
Collapse
Affiliation(s)
- Olivier Thibaut
- Life Sciences Department, Walloon agricultural research Centre, Rue de Liroux 4, 5030 Gembloux, Belgium.
- UCLouvain, Earth&Life Institute, Croix du Sud 2bte L7.05.03, 1348 Louvain-la-Neuve, Belgium.
| | - Bragard Claude
- UCLouvain, Earth&Life Institute, Croix du Sud 2bte L7.05.03, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
6
|
Pallás V, Sánchez-Navarro JA, James D. Recent Advances on the Multiplex Molecular Detection of Plant Viruses and Viroids. Front Microbiol 2018; 9:2087. [PMID: 30250456 PMCID: PMC6139301 DOI: 10.3389/fmicb.2018.02087] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Plant viruses are still one of the main contributors to economic losses in agriculture. It has been estimated that plant viruses can cause as much as 50 billion euros loss worldwide, per year. This situation may be worsened by recent climate change events and the associated changes in disease epidemiology. Reliable and early detection methods are still one of the main and most effective actions to develop control strategies for plant viral diseases. During the last years, considerable progress has been made to develop tools with high specificity and low detection limits for use in the detection of these plant pathogens. Time and cost reductions have been some of the main objectives pursued during the last few years as these increase their feasibility for routine use. Among other strategies, these objectives can be achieved by the simultaneous detection and (or) identification of several viruses in a single assay. Nucleic acid-based detection techniques are especially suitable for this purpose. Polyvalent detection has allowed the detection of multiple plant viruses at the genus level. Multiplexing RT polymerase chain reaction (PCR) has been optimized for the simultaneous detection of more than 10 plant viruses/viroids. In this short review, we provide an update on the progress made during the last decade on techniques such as multiplex PCR, polyvalent PCR, non-isotopic molecular hybridization techniques, real-time PCR, and array technologies to allow simultaneous detection of multiple plant viruses. Also, the potential and benefits of the powerful new technique of deep sequencing/next-generation sequencing are described.
Collapse
Affiliation(s)
- Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, IBMCP, Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A. Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, IBMCP, Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Delano James
- Sidney Laboratory, Canadian Food Inspection Agency, Sidney, BC, Canada
| |
Collapse
|
7
|
Tangkanchanapas P, Höfte M, De Jonghe K. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) designed for fast and sensitive on-site detection of Pepper chat fruit viroid (PCFVd). J Virol Methods 2018; 259:81-91. [PMID: 29894712 DOI: 10.1016/j.jviromet.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 01/06/2023]
Abstract
Pepper chat fruit viroid (PCFVd) is one of the most important tomato and pepper diseases causing serious losses, affecting productivity, fruit quality and even international seed trade. Reverse transcription Loop-mediated isothermal amplification (RT-LAMP) is a fast and reliable RNA amplification assay, out competing conventional reverse transcription polymerase chain reaction (RT-PCR) in robustness, analytical sensitivity and specificity, and cost-effectiveness. In this work, a PCFVd specific RT-LAMP detection assay, based on a set of six primers was developed. Under the optimized conditions, PCFVd could be detected within 15 min, with a sensitivity of detecting PCFVd that was almost the same as a probe-based qRT-PCR and 10-100 times higher than the available RT-PCR methods. No cross-amplification with other viroids and tomato viruses was observed. The validated assay was also adapted for convenient on-site detection. Besides replacing the full RNA extraction with a simple lysis procedure, several visualization options, of which the use of SYTO9 was the most convenient, were presented to accommodate any in-field application of the method.
Collapse
Affiliation(s)
- Parichate Tangkanchanapas
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Plant Sciences Unit, Crop Protection, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, B-9820 Merelbeke, Belgium
| | - Monica Höfte
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kris De Jonghe
- Plant Sciences Unit, Crop Protection, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, B-9820 Merelbeke, Belgium.
| |
Collapse
|