1
|
Wang X, Kotta-Loizou I, Coutts RHA, Deng H, Han Z, Hong N, Shafik K, Wang L, Guo Y, Yang M, Xu W, Wang G. A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum fungal resistance. MOLECULAR PLANT 2024; 17:955-971. [PMID: 38745413 DOI: 10.1016/j.molp.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.
Collapse
Affiliation(s)
- Xianhong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK; Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Huifang Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Zhenhao Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Karim Shafik
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China; Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt
| | - Liping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Yashuang Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Mengmeng Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| | - Guoping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
2
|
Nery FMB, Batista JG, Melo FFS, Ribeiro SG, Boiteux LS, Melo FL, Silva JGI, Reis LDNA, Pereira-Carvalho RC. Novel plant-associated genomoviruses from the Brazilian Cerrado biome. Arch Virol 2023; 168:286. [PMID: 37940763 DOI: 10.1007/s00705-023-05892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 11/10/2023]
Abstract
The discovery rate of new plant viruses has increased due to studies involving high-throughput sequencing (HTS), particularly for single-stranded DNA viruses of the family Genomoviridae. We carried out an HTS-based survey of genomoviruses in a wide range of native and exotic trees grown in the Brazilian Cerrado biome, and the complete genome sequences of two novel members of the family Genomoviridae from two distinct genera were determined. Specific primers were designed to detect these genomoviruses in individual samples. A new gemykolovirus (Tecoma stans associated gemykolovirus) was detected in Tecoma stans, and a new gemykibivirus (Ouratea duparquetiana associated gemykibivirus) was detected in Ouratea duparquetiana. A gemykrogvirus related to Gila monster associated gemykrogvirus (80% pairwise identity) was also detected in foliar samples of Trembleya parviflora. Our pilot study paves the way for a better characterization of this diverse collection of genomoviruses as well as their interactions with the associated tree species.
Collapse
Affiliation(s)
- Flávia Milene B Nery
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Josiane G Batista
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Felipe Fochat S Melo
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-017, Brazil
| | - Leonardo S Boiteux
- Embrapa Vegetable Crops (Hortaliças), National Center for Vegetable Crops Research (CNPH), Brasília, DF, 70275-970, Brazil
| | - Fernando L Melo
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Juliana Gabrielle I Silva
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Luciane de Nazaré A Reis
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Rita C Pereira-Carvalho
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
3
|
Moubset O, François S, Maclot F, Palanga E, Julian C, Claude L, Fernandez E, Rott P, Daugrois JH, Antoine-Lorquin A, Bernardo P, Blouin AG, Temple C, Kraberger S, Fontenele RS, Harkins GW, Ma Y, Marais A, Candresse T, Chéhida SB, Lefeuvre P, Lett JM, Varsani A, Massart S, Ogliastro M, Martin DP, Filloux D, Roumagnac P. Virion-Associated Nucleic Acid-Based Metagenomics: A Decade of Advances in Molecular Characterization of Plant Viruses. PHYTOPATHOLOGY 2022; 112:2253-2272. [PMID: 35722889 DOI: 10.1094/phyto-03-22-0096-rvw] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last decade, viral metagenomic studies have resulted in the discovery of thousands of previously unknown viruses. These studies are likely to play a pivotal role in obtaining an accurate and robust understanding of how viruses affect the stability and productivity of ecosystems. Among the metagenomics-based approaches that have been developed since the beginning of the 21st century, shotgun metagenomics applied specifically to virion-associated nucleic acids (VANA) has been used to disentangle the diversity of the viral world. We summarize herein the results of 24 VANA-based studies, focusing on plant and insect samples conducted over the last decade (2010 to 2020). Collectively, viruses from 85 different families were reliably detected in these studies, including capsidless RNA viruses that replicate in fungi, oomycetes, and plants. Finally, strengths and weaknesses of the VANA approach are summarized and perspectives of applications in detection, epidemiological surveillance, environmental monitoring, and ecology of plant viruses are provided. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Oumaima Moubset
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | - François Maclot
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Essowè Palanga
- Institut Togolais de Recherche Agronomique (ITRA-CRASS), B.P. 129, Kara, Togo
| | - Charlotte Julian
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Lisa Claude
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Philippe Rott
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Jean-Heinrich Daugrois
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | | | - Arnaud G Blouin
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
- Plant Protection Department, Agroscope, 1260, Nyon, Switzerland
| | - Coline Temple
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A
| | - Gordon W Harkins
- South African Medical Research Council Capacity Development Unit, South African National Bioinformatics, Institute, University of the Western Cape, South Africa
| | - Yuxin Ma
- Univ. Bordeaux, INRAE, UMR BFP, 33140 Villenave d'Ornon, France
| | - Armelle Marais
- Univ. Bordeaux, INRAE, UMR BFP, 33140 Villenave d'Ornon, France
| | | | | | | | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Sébastien Massart
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | | | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
4
|
Feng C, Feng J, Wang Z, Pedersen C, Wang X, Saleem H, Domier L, Marzano SYL. Identification of the Viral Determinant of Hypovirulence and Host Range in Sclerotiniaceae of a Genomovirus Reconstructed from the Plant Metagenome. J Virol 2021; 95:e0026421. [PMID: 34132570 PMCID: PMC8354332 DOI: 10.1128/jvi.00264-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Uncharacterized viral genomes that encode circular replication-associated proteins of single-stranded DNA viruses have been discovered by metagenomics/metatranscriptomics approaches. Some of these novel viruses are classified in the newly formed family Genomoviridae. Here, we determined the host range of a novel genomovirus, SlaGemV-1, through the transfection of Sclerotinia sclerotiorum with infectious clones. Inoculating with the rescued virions, we further transfected Botrytis cinerea and Monilinia fructicola, two economically important members of the family Sclerotiniaceae, and Fusarium oxysporum. SlaGemV-1 causes hypovirulence in S. sclerotiorum, B. cinerea, and M. fructicola. SlaGemV-1 also replicates in Spodoptera frugiperda insect cells but not in Caenorhabditis elegans or plants. By expressing viral genes separately through site-specific integration, the replication protein alone was sufficient to cause debilitation. Our study is the first to demonstrate the reconstruction of a metagenomically discovered genomovirus without known hosts with the potential of inducing hypovirulence, and the infectious clone allows for studying mechanisms of genomovirus-host interactions that are conserved across genera. IMPORTANCE Little is known about the exact host range of widespread genomoviruses. The genome of soybean leaf-associated gemygorvirus-1 (SlaGemV-1) was originally assembled from a metagenomic/metatranscriptomic study without known hosts. Here, we rescued SlaGemV-1 and found that it could infect three important plant-pathogenic fungi and fall armyworm (S. frugiperda Sf9) insect cells but not a model nematode, C. elegans, or model plant species. Most importantly, SlaGemV-1 shows promise for inducing hypovirulence of the tested fungal species in the family Sclerotiniaceae, including Sclerotinia sclerotiorum, Botrytis cinerea, and Monilinia fructicola. The viral determinant of hypovirulence was further identified as replication initiation protein. As a proof of concept, we demonstrate that viromes discovered in plant metagenomes can be a valuable genetic resource when novel viruses are rescued and characterized for their host range.
Collapse
Affiliation(s)
- Chenchen Feng
- Department of Horticulture, Agronomy, and Plant Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Jiuhuan Feng
- Department of Horticulture, Agronomy, and Plant Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Ziyi Wang
- Department of Horticulture, Agronomy, and Plant Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Connor Pedersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Xiuqing Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Huma Saleem
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Leslie Domier
- United States Department of Agriculture/Agricultural Research Service, Urbana, Illinois, USA
| | - Shin-Yi Lee Marzano
- Department of Horticulture, Agronomy, and Plant Sciences, South Dakota State University, Brookings, South Dakota, USA
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
5
|
Abstract
The family Genomoviridae (phylum Cressdnaviricota, class Repensiviricetes, order Geplafuvirales) includes viruses with circular single-stranded DNA genomes encoding two proteins, the capsid protein and the rolling-circle replication initiation protein. The genomes of the vast majority of members in this family have been sequenced directly from diverse environmental or animal- and plant-associated samples, but two genomoviruses have been identified infecting fungi. Since the last taxonomic update of the Genomoviridae, a number of new members of this family have been sequenced. Here, we report on the most recent taxonomic update, including the creation of one new genus, Gemytripvirus, and classification of ~420 new genomoviruses into 164 new species. We also announce the adoption of the "Genus + freeform epithet" binomial system for the naming of all 236 officially recognized species in the family Genomoviridae. The updated taxonomy presented in this article has been accepted by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France.
| |
Collapse
|
6
|
Daugrois JH, Filloux D, Julian C, Claude L, Ferdinand R, Fernandez E, Fontes H, Rott PC, Roumagnac P. Comparison of the Virome of Quarantined Sugarcane Varieties and the Virome of Grasses Growing near the Quarantine Station. Viruses 2021; 13:922. [PMID: 34065683 PMCID: PMC8157134 DOI: 10.3390/v13050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Visacane is a sugarcane quarantine station located in the South of France, far away from sugarcane growing areas. Visacane imports up to 100 sugarcane varieties per year, using safe control and confinement measures of plants and their wastes to prevent any risk of pathogen spread outside of the facilities. Viruses hosted by the imported material are either known or unknown to cause disease in cultivated sugarcane. Poaceae viruses occurring in plants surrounding the quarantine glasshouse are currently unknown. These viruses could be considered as a source of new sugarcane infections and potentially cause new sugarcane diseases in cases of confinement barrier failure. The aim of this study was to compare the plant virome inside and outside of the quarantine station to identify potential confinement failures and risks of cross infections. Leaves from quarantined sugarcane varieties and from wild Poaceae growing near the quarantine were collected and processed by a metagenomics approach based on virion-associated nucleic acids extraction and library preparation for Illumina sequencing. While viruses belonging to the same virus genus or family were identified in the sugarcane quarantine and its surroundings, no virus species was detected in both environments. Based on the data obtained in this study, no virus movement between quarantined sugarcane and nearby grassland has occurred so far, and the confinement procedures of Visacane appear to be properly implemented.
Collapse
Affiliation(s)
- Jean H. Daugrois
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Charlotte Julian
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Lisa Claude
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Romain Ferdinand
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Hugo Fontes
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, 13200 Arles, France;
- Institut Méditerranéen de Biodiversité et Ecologie, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, IUT d’Avignon, 337 chemin des Meinajariés, Site Agroparc BP 61207, 84911 Avignon, France
| | - Philippe C. Rott
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| |
Collapse
|
7
|
Identification and Distribution of Novel Cressdnaviruses and Circular molecules in Four Penguin Species in South Georgia and the Antarctic Peninsula. Viruses 2020; 12:v12091029. [PMID: 32947826 PMCID: PMC7551938 DOI: 10.3390/v12091029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
There is growing interest in uncovering the viral diversity present in wild animal species. The remote Antarctic region is home to a wealth of uncovered microbial diversity, some of which is associated with its megafauna, including penguin species, the dominant avian biota. Penguins interface with a number of other biota in their roles as marine mesopredators and several species overlap in their ranges and habitats. To characterize the circular single-stranded viruses related to those in the phylum Cressdnaviricota from these environmental sentinel species, cloacal swabs (n = 95) were obtained from King Penguins in South Georgia, and congeneric Adélie Penguins, Chinstrap Penguins, and Gentoo Penguins across the South Shetland Islands and Antarctic Peninsula. Using a combination of high-throughput sequencing, abutting primers-based PCR recovery of circular genomic elements, cloning, and Sanger sequencing, we detected 97 novel sequences comprising 40 ssDNA viral genomes and 57 viral-like circular molecules from 45 individual penguins. We present their detection patterns, with Chinstrap Penguins harboring the highest number of new sequences. The novel Antarctic viruses identified appear to be host-specific, while one circular molecule was shared between sympatric Chinstrap and Gentoo Penguins. We also report viral genotype sharing between three adult-chick pairs, one in each Pygoscelid species. Sequence similarity network approaches coupled with Maximum likelihood phylogenies of the clusters indicate the 40 novel viral genomes do not fall within any known viral families and likely fall within the recently established phylum Cressdnaviricota based on their replication-associated protein sequences. Similarly, 83 capsid protein sequences encoded by the viruses or viral-like circular molecules identified in this study do not cluster with any of those encoded by classified viral groups. Further research is warranted to expand knowledge of the Antarctic virome and would help elucidate the importance of viral-like molecules in vertebrate host evolution.
Collapse
|
8
|
Fontenele RS, Roumagnac P, Richet C, Kraberger S, Stainton D, Aleamotu'a M, Filloux D, Bernardo P, Harkins GW, McCarthy J, Charles LS, Lamas NS, Abreu EFM, Abreu RA, Batista GB, Lacerda ALM, Salywon A, Wojciechowski MF, Majure LC, Martin DP, Ribeiro SG, Lefeuvre P, Varsani A. Diverse genomoviruses representing twenty-nine species identified associated with plants. Arch Virol 2020; 165:2891-2901. [PMID: 32893316 DOI: 10.1007/s00705-020-04801-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
Genomoviruses (family Genomoviridae) are circular single-stranded DNA viruses that have been mainly identified through metagenomics studies in a wide variety of samples from various environments. Here, we describe 98 genomes of genomoviruses found associated with members of 19 plant families from Australia, Brazil, France, South Africa and the USA. These 98 genomoviruses represent 29 species, 26 of which are new, in the genera Gemykolovirus (n = 37), Gemyduguivirus (n = 9), Gemygorvirus (n = 8), Gemykroznavirus (n = 6), Gemycircularvirus (n = 21) and Gemykibivirus (n = 17).
Collapse
Affiliation(s)
- Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics and Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Life sciences, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Philippe Roumagnac
- CIRAD, BGPI, 34398, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, 34398, Montpellier, France
| | - Cécile Richet
- CIRAD, BGPI, 34398, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, 34398, Montpellier, France
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics and Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Daisy Stainton
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA
| | - Maketalena Aleamotu'a
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Denis Filloux
- CIRAD, BGPI, 34398, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, 34398, Montpellier, France
| | - Pauline Bernardo
- CIRAD, BGPI, 34398, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Univ Montpellier, 34398, Montpellier, France.,Enza Zaden, Haling 1-E, 1602 DB, Enkhuizen, The Netherlands
| | - Gordon W Harkins
- South African MRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - James McCarthy
- Manaaki Whenua, Landcare Research, Lincoln, 7640, New Zealand
| | - Lachlan S Charles
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92507, USA
| | - Natalia S Lamas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | - Rayane A Abreu
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.,PPG Ciências Naturais e Biotecnologia, Universidade Federal de Campina Grande, Cuité, PB, Brazil
| | - Graciete B Batista
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.,PPG Ciências Naturais e Biotecnologia, Universidade Federal de Campina Grande, Cuité, PB, Brazil
| | - Ana L M Lacerda
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | | | - Lucas C Majure
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.,PPG Ciências Naturais e Biotecnologia, Universidade Federal de Campina Grande, Cuité, PB, Brazil
| | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics and Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287-5001, USA. .,School of Life sciences, Arizona State University, Tempe, AZ, 85287-5001, USA. .,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
9
|
Kraberger S, Schmidlin K, Fontenele RS, Walters M, Varsani A. Unravelling the Single-Stranded DNA Virome of the New Zealand Blackfly. Viruses 2019; 11:E532. [PMID: 31181730 PMCID: PMC6630596 DOI: 10.3390/v11060532] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 01/23/2023] Open
Abstract
Over the last decade, arthropods have been shown to harbour a rich diversity of viruses. Through viral metagenomics a large diversity of single-stranded (ss) DNA viruses have been identified. Here we examine the ssDNA virome of the hematophagous New Zealand blackfly using viral metagenomics. Our investigation reveals a plethora of novel ssDNA viral genomes, some of which cluster in the viral families Genomoviridae (n = 9), Circoviridae (n = 1), and Microviridae (n = 108), others in putative families that, at present, remain unclassified (n = 20) and one DNA molecule that only encodes a replication associated protein. Among these novel viruses, two putative multi-component virus genomes were recovered, and these are most closely related to a Tongan flying fox faeces-associated multi-component virus. Given that the only other known multi-component circular replication-associated (Rep) protein encoding single-stranded (CRESS) DNA viruses infecting plants are in the families Geminiviridae (members of the genus Begomovirus) and Nanoviridae, it appears these are likely a new multi-component virus group which may be associated with animals. This study reiterates the diversity of ssDNA viruses in nature and in particular with the New Zealand blackflies.
Collapse
Affiliation(s)
- Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Matthew Walters
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| |
Collapse
|
10
|
Molecular characterisation of a novel gemycircularvirus associated with olive trees in Italy. Virus Res 2019; 263:169-172. [DOI: 10.1016/j.virusres.2019.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 12/18/2022]
|
11
|
Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv Virus Res 2018; 103:71-133. [PMID: 30635078 DOI: 10.1016/bs.aivir.2018.10.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
12
|
Novel circular DNA viruses associated with Apiaceae and Poaceae from South Africa and New Zealand. Arch Virol 2018; 164:237-242. [PMID: 30220037 DOI: 10.1007/s00705-018-4031-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Advances in molecular techniques used in viral metagenomics coupled with high throughput sequencing is rapidly expanding our knowledge of plant-associated virus diversity. Applying such approaches, we have identified five novel circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses from Poaceae and Apiaceae plant from South Africa and New Zealand. These viruses have a simple genomic organization, including two open reading frames that likely encode a Rep and a capsid protein (CP), a conserved nonanucleotide motif on the apex of a putative stem loop structure, and conserved rolling-circle replication and helicase motifs within their likely Rep: all suggesting that they replicate through rolling-circle replication. The Reps and the CPs putatively encoded by these five novel viruses share low to moderate degrees of similarity (22.1 - 44.6%) with other CRESS DNA viruses.
Collapse
|
13
|
Analysis of DNAs associated with coconut foliar decay disease implicates a unique single-stranded DNA virus representing a new taxon. Sci Rep 2018; 8:5698. [PMID: 29632309 PMCID: PMC5890292 DOI: 10.1038/s41598-018-23739-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
The unique ecology, pathology and undefined taxonomy of coconut foliar decay virus (CFDV), found associated with coconut foliar decay disease (CFD) in 1986, prompted analyses of old virus samples by modern methods. Rolling circle amplification and deep sequencing applied to nucleic acid extracts from virion preparations and CFD-affected palms identified twelve distinct circular DNAs, eleven of which had a size of about 1.3 kb and one of 641 nt. Mass spectrometry-based protein identification proved that a 24 kDa protein encoded by two 1.3 kb DNAs is the virus capsid protein with highest sequence similarity to that of grabloviruses (family Geminiviridae), even though CFDV particles are not geminate. The nine other 1.3 kb DNAs represent alphasatellites coding for replication initiator proteins that differ clearly from those encoded by nanovirid DNA-R. The 641 nt DNA-gamma is unique and may encode a movement protein. Three DNAs, alphasatellite CFDAR, capsid protein encoding CFDV DNA-S.1 and DNA-gamma share sequence motifs near their replication origins and were consistently present in all samples analysed. These DNAs appear to be integral components of a possibly tripartite CFDV genome, different from those of any Geminiviridae or Nanoviridae family member, implicating CFDV as representative of a new genus and family.
Collapse
|
14
|
Nanovirus-alphasatellite complex identified in Vicia cracca in the Rhône delta region of France. Arch Virol 2017; 163:695-700. [PMID: 29159590 DOI: 10.1007/s00705-017-3634-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Nanoviruses are multi-component plant-infecting single-stranded DNA viruses. Using a viral metagenomics-informed approach, a new nanovirus and two associated alphasatellite molecules have been identified in an uncultivated asymptomatic Vicia cracca plant in the Rhône region of France. This novel nanovirus genome includes eight genomic components (named DNA-R, DNA-S, DNA-M, DNA-C, DNA-N, DNA-U1, DNA-U2 and DNA-U4) and, across all components, shares < 66% pairwise sequence identity with other nanovirus genomes. The two associated alphasatellites share 62% identity with each other and < 81% identity will all other nanovirus-associated alphasatellites.
Collapse
|
15
|
Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR). Virus Res 2017; 241:172-184. [PMID: 28688850 DOI: 10.1016/j.virusres.2017.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 01/27/2023]
Abstract
As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most stunted annual Avena sativa L. (oats). These findings suggest that some of the diversity in grass-infecting Luteoviridae reflects viral capacity to modulate defenses in different host types. Intriguingly, while all virus treatments also reduced root production in both host species, only crop-associated BYDV-PAV (or co-infection) reduced rooting depths. Such root effects may increase host susceptibility to drought, and indicate that BYDV-PAV pathogenicity is determined by something other than a P0 VSR. These findings contribute to growing evidence that pathogenic crop-associated viruses may harm native species as well as crops. Critical next questions include the extent to which crop-associated selection pressures drive viral pathogenesis.
Collapse
|
16
|
Varsani A, Krupovic M. Sequence-based taxonomic framework for the classification of uncultured single-stranded DNA viruses of the family Genomoviridae. Virus Evol 2017; 3:vew037. [PMID: 28458911 PMCID: PMC5399927 DOI: 10.1093/ve/vew037] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
With the advent of metagenomics approaches, a large diversity of known and unknown viruses has been identified in various types of environmental, plant, and animal samples. One such widespread virus group is the recently established family Genomoviridae which includes viruses with small (∼2-2.4 kb), circular ssDNA genomes encoding rolling-circle replication initiation proteins (Rep) and unique capsid proteins. Here, we propose a sequence-based taxonomic framework for classification of 121 new virus genomes within this family. Genomoviruses display ∼47% sequence diversity, which is very similar to that within the well-established and extensively studied family Geminiviridae (46% diversity). Based on our analysis, we establish a 78% genome-wide pairwise identity as a species demarcation threshold. Furthermore, using a Rep sequence phylogeny-based analysis coupled with the current knowledge on the classification of geminiviruses, we establish nine genera within the Genomoviridae family. These are Gemycircularvirus (n = 73), Gemyduguivirus (n = 1), Gemygorvirus (n = 9), Gemykibivirus (n = 29), Gemykolovirus (n = 3), Gemykrogvirus (n = 3), Gemykroznavirus (n = 1), Gemytondvirus (n = 1), Gemyvongvirus (n = 1). The presented taxonomic framework offers rational classification of genomoviruses based on the sequence information alone and sets an example for future classification of other groups of uncultured viruses discovered using metagenomics approaches.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa
| | - Mart Krupovic
- Unité Biologie moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| |
Collapse
|
17
|
Palanga E, Filloux D, Martin DP, Fernandez E, Gargani D, Ferdinand R, Zabré J, Bouda Z, Neya JB, Sawadogo M, Traore O, Peterschmitt M, Roumagnac P. Metagenomic-Based Screening and Molecular Characterization of Cowpea-Infecting Viruses in Burkina Faso. PLoS One 2016; 11:e0165188. [PMID: 27764211 PMCID: PMC5072566 DOI: 10.1371/journal.pone.0165188] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022] Open
Abstract
Cowpea, (Vigna unguiculata L. (Walp)) is an annual tropical grain legume. Often referred to as "poor man's meat", cowpea is one of the most important subsistence legumes cultivated in West Africa due to the high protein content of its seeds. However, African cowpea production can be seriously constrained by viral diseases that reduce yields. While twelve cowpea-infecting viruses have been reported from Africa, only three of these have so-far been reported from Burkina Faso. Here we use a virion-associated nucleic acids (VANA)-based metagenomics method to screen for the presence of cowpea viruses from plants collected from the three agro-climatic zones of Burkina Faso. Besides the three cowpea-infecting virus species which have previously been reported from Burkina Faso (Cowpea aphid borne mosaic virus [Family Potyviridae], the Blackeye cowpea mosaic virus-a strain of Bean common mosaic virus-[Family Potyviridae] and Cowpea mottle virus [Family Tombusviridae]) five additional viruses were identified: Southern cowpea mosaic virus (Sobemovirus genus), two previously uncharacterised polerovirus-like species (Family Luteoviridae), a previously uncharacterised tombusvirus-like species (Family Tombusviridae) and a previously uncharacterised mycotymovirus-like species (Family Tymoviridae). Overall, potyviruses were the most prevalent cowpea viruses (detected in 65.5% of samples) and the Southern Sudan zone of Burkina Faso was found to harbour the greatest degrees of viral diversity and viral prevalence. Partial genome sequences of the two novel polerovirus-like and tombusvirus-like species were determined and RT-PCR primers were designed for use in Burkina Faso to routinely detect all of these cowpea-associated viruses.
Collapse
Affiliation(s)
- Essowè Palanga
- Laboratoire de Génétique et Biotechnologies Végétales, Université de Ouagadougou, 03 BP 7021, Ouagadougou, Burkina Faso
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - Denis Filloux
- CIRAD-INRA-SupAgro, UMR BGPI, F-34398, Montpellier, France
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | | | - Daniel Gargani
- CIRAD-INRA-SupAgro, UMR BGPI, F-34398, Montpellier, France
| | | | - Jean Zabré
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - Zakaria Bouda
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - James Bouma Neya
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - Mahamadou Sawadogo
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
| | - Oumar Traore
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | | | | |
Collapse
|
18
|
Genomoviridae: a new family of widespread single-stranded DNA viruses. Arch Virol 2016; 161:2633-43. [DOI: 10.1007/s00705-016-2943-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/17/2016] [Indexed: 11/26/2022]
|
19
|
Uch R, Fournier PE, Robert C, Blanc-Tailleur C, Galicher V, Barre R, Jordier F, de Micco P, Raoult D, Biagini P. Divergent Gemycircularvirus in HIV-Positive Blood, France. Emerg Infect Dis 2016; 21:2096-8. [PMID: 26488181 PMCID: PMC4622245 DOI: 10.3201/eid2111.150486] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Zhang W, Li L, Deng X, Blümel J, Nübling CM, Hunfeld A, Baylis SA, Delwart E. Viral nucleic acids in human plasma pools. Transfusion 2016; 56:2248-55. [PMID: 27306718 DOI: 10.1111/trf.13692] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/06/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND The identification of viruses in human blood is required for epidemiologic surveillance and to detect potentially emerging threats to blood transfusion safety. STUDY DESIGN AND METHODS Viral nucleic acids in plasma fractionation pools assembled from blood donors in the United States and Europe were analyzed by viral metagenomics. RESULTS Anelloviruses were detected in each of the 10 plasma pools. Human pegivirus A (HPgV; GB virus type C) sequences were identified in eight of the 10 pools, more than 90% of which belong to Genotype 2. The recently described human HPgV2 in Flaviviridae was not detected. A small number of sequence reads of human papillomavirus were also detected in three pools. In one pool, two different gemycircularvirus genomes were identified and fully sequenced. The capsid protein of one gemycircularvirus shared 83% to 84% identity to those of genomes from human serum and sewage. The presence of the gemycircularvirus genomes in the plasma pool was independently confirmed and the viral concentration estimated by digital PCR at more than 10(6) copies/mL assuming their origin from single donors. CONCLUSION Further research is required to elucidate whether gemycircularviruses can infect humans or are indicative of contamination occurring during phlebotomy, plasma pool processing, or ongoing donor fungal infections.
Collapse
Affiliation(s)
- Wen Zhang
- Blood Systems Research Institute, San Francisco, California.,Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, California.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | | | | | | | | | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California. .,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California.
| |
Collapse
|
21
|
Steel O, Kraberger S, Sikorski A, Young LM, Catchpole RJ, Stevens AJ, Ladley JJ, Coray DS, Stainton D, Dayaram A, Julian L, van Bysterveldt K, Varsani A. Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand. INFECTION GENETICS AND EVOLUTION 2016; 43:151-64. [PMID: 27211884 DOI: 10.1016/j.meegid.2016.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
In recent years, innovations in molecular techniques and sequencing technologies have resulted in a rapid expansion in the number of known viral sequences, in particular those with circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA genomes. CRESS DNA viruses are present in the virome of many ecosystems and are known to infect a wide range of organisms. A large number of the recently identified CRESS DNA viruses cannot be classified into any known viral families, indicating that the current view of CRESS DNA viral sequence space is greatly underestimated. Animal faecal matter has proven to be a particularly useful source for sampling CRESS DNA viruses in an ecosystem, as it is cost-effective and non-invasive. In this study a viral metagenomic approach was used to explore the diversity of CRESS DNA viruses present in the faeces of domesticated and wild animals in New Zealand. Thirty-eight complete CRESS DNA viral genomes and two circular molecules (that may be defective molecules or single components of multicomponent genomes) were identified from forty-nine individual animal faecal samples. Based on shared genome organisations and sequence similarities, eighteen of the isolates were classified as gemycircularviruses and twelve isolates were classified as smacoviruses. The remaining eight isolates lack significant sequence similarity with any members of known CRESS DNA virus groups. This research adds significantly to our knowledge of CRESS DNA viral diversity in New Zealand, emphasising the prevalence of CRESS DNA viruses in nature, and reinforcing the suggestion that a large proportion of CRESS DNA viruses are yet to be identified.
Collapse
Affiliation(s)
- Olivia Steel
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Alyssa Sikorski
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Laura M Young
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Ryan J Catchpole
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Aaron J Stevens
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jenny J Ladley
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Dorien S Coray
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Anisha Dayaram
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Laurel Julian
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Katherine van Bysterveldt
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, USA.
| |
Collapse
|
22
|
Bernardo P, Muhire B, François S, Deshoux M, Hartnady P, Farkas K, Kraberger S, Filloux D, Fernandez E, Galzi S, Ferdinand R, Granier M, Marais A, Monge Blasco P, Candresse T, Escriu F, Varsani A, Harkins GW, Martin DP, Roumagnac P. Molecular characterization and prevalence of two capulaviruses: Alfalfa leaf curl virus from France and Euphorbia caput-medusae latent virus from South Africa. Virology 2016; 493:142-53. [PMID: 27038709 DOI: 10.1016/j.virol.2016.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/25/2023]
Abstract
Little is known about the prevalence, diversity, evolutionary processes, genomic structures and population dynamics of viruses in the divergent geminivirus lineage known as the capulaviruses. We determined and analyzed full genome sequences of 13 Euphorbia caput-medusae latent virus (EcmLV) and 26 Alfalfa leaf curl virus (ALCV) isolates, and partial genome sequences of 23 EcmLV and 37 ALCV isolates. While EcmLV was asymptomatic in uncultivated southern African Euphorbia caput-medusae, severe alfalfa disease symptoms were associated with ALCV in southern France. The prevalence of both viruses exceeded 10% in their respective hosts. Besides using patterns of detectable negative selection to identify ORFs that are probably functionally expressed, we show that ALCV and EcmLV both display evidence of inter-species recombination and biologically functional genomic secondary structures. Finally, we show that whereas the EcmLV populations likely experience restricted geographical dispersion, ALCV is probably freely moving across the French Mediterranean region.
Collapse
Affiliation(s)
- Pauline Bernardo
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France
| | - Brejnev Muhire
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Sarah François
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France; INRA, UMR 1333, DGIMI, Montpellier, France; CNRS-IRD-UM1-UM2, UMR 5290, MIVEGEC, Avenue Agropolis, Montpellier, France
| | - Maëlle Deshoux
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France
| | - Penelope Hartnady
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Kata Farkas
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Denis Filloux
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France
| | - Emmanuel Fernandez
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France
| | - Serge Galzi
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France
| | - Romain Ferdinand
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France
| | - Martine Granier
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France
| | - Armelle Marais
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon Cedex, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon Cedex, France
| | - Pablo Monge Blasco
- Unidad de Sanidad Vegetal, Centro de Investigacion y Tecnologıa Agroalimentaria de Aragon (CITA), Av. Montañana 930, 50059 Zaragoza, Spain
| | - Thierry Candresse
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon Cedex, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon Cedex, France
| | - Fernando Escriu
- Unidad de Sanidad Vegetal, Centro de Investigacion y Tecnologıa Agroalimentaria de Aragon (CITA), Av. Montañana 930, 50059 Zaragoza, Spain; Unidad de Sanidad Vegetal, Instituto Agroalimentario de Aragón IA2 (CITA - Universidad de Zaragoza), Av. Montañana 930, 50059 Zaragoza, Spain
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, South Africa
| | - Gordon W Harkins
- South African National Bioinformatics Institute, MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Cape Town, South Africa
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Philippe Roumagnac
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France.
| |
Collapse
|
23
|
Male MF, Kraberger S, Stainton D, Kami V, Varsani A. Cycloviruses, gemycircularviruses and other novel replication-associated protein encoding circular viruses in Pacific flying fox (Pteropus tonganus) faeces. INFECTION GENETICS AND EVOLUTION 2016; 39:279-292. [PMID: 26873064 DOI: 10.1016/j.meegid.2016.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/27/2016] [Accepted: 02/06/2016] [Indexed: 12/13/2022]
Abstract
Viral metagenomic studies have demonstrated that animal faeces can be a good sampling source for exploring viral diversity associated with the host and its environment. As part of an continuing effort to identify novel circular replication-associated protein encoding single-stranded (CRESS) DNA viruses circulating in the Tongan archipelago, coupled with the fact that bats are a reservoir species of a large number of viruses, we used a metagenomic approach to investigate the CRESS DNA virus diversity in Pacific flying fox (Pteropus tonganus) faeces. Faecal matter from four roosting sites located in Ha'avakatolo, Kolovai, Ha'ateiho and Lapaha on Tongatapu Island was collected in April 2014 and January 2015. From these samples we identified five novel cycloviruses representing three putative species, 25 gemycircularviruses representing at least 14 putative species, 17 other CRESS DNA viruses (15 putative species), two circular DNA molecules and a putative novel multi-component virus for which we have identified three cognate molecules. This study demonstrates that there exists a large diversity of CRESS DNA viruses in Pacific flying fox faeces.
Collapse
Affiliation(s)
- Maketalena F Male
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Daisy Stainton
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | | | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, USA.
| |
Collapse
|
24
|
Zhou C, Zhang S, Gong Q, Hao A. A novel gemycircularvirus in an unexplained case of child encephalitis. Virol J 2015; 12:197. [PMID: 26596706 PMCID: PMC4657213 DOI: 10.1186/s12985-015-0431-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022] Open
Abstract
Background Recently, a diverse group of viruses with circular, replication initiator protein(Rep) encoding, single stranded DNA (CRESS-DNA) genomes, were discovered from wide range of eukaryotic organisms ranging from mammals to fungi. Gemycircularvirus belongs to a distinct group of CRESS-DNA genomes and is classified under the genus name of Gemycircularvirus. Findings Here, a novel gemycircularvirus named GeTz1 from cerebrospinal fluid sample of a child with unexplainable encephalitis was characterized. The novel gemycircularvirus encodes two major proteins, including a capsid protein (Cap) and a replication-associated protein (Rep). Phylogenetic analysis based on the amino acid sequence of Rep indicated that GeTz1 clusters with one gemycircularvirus discovered from bird (KF371633), sharing 46.6 % amino acid sequence identity with each other. Conclusion A novel gemycircularvirus was discovered from cerebrospinal fluid sample of a child with unexplainable encephalitis. Further studies, such as testing human sera for specific antibodies, should be performed to investigate whether gemycircularvirus infects human and is associated with encephalitis.
Collapse
Affiliation(s)
- Chenglin Zhou
- Department of Laboratory Medicine, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, 225300, China.
| | - Shibing Zhang
- Department of Laboratory Medicine, the First People's Hospital of Suqian, Suqian, Jiangsu, 223800, China.
| | - Qin Gong
- Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, 225300, China.
| | - Aimin Hao
- Department of Laboratory Medicine, the Second People's Hospital of Wuxi, Wuxi, Jiangsu, 214002, China.
| |
Collapse
|
25
|
Khalifa ME, Varsani A, Ganley ARD, Pearson MN. Comparison of Illumina de novo assembled and Sanger sequenced viral genomes: A case study for RNA viruses recovered from the plant pathogenic fungus Sclerotinia sclerotiorum. Virus Res 2015; 219:51-57. [PMID: 26581665 DOI: 10.1016/j.virusres.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/21/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
Abstract
The advent of 'next generation sequencing' (NGS) technologies has led to the discovery of many novel mycoviruses, the majority of which are sufficiently different from previously sequenced viruses that there is no appropriate reference sequence on which to base the sequence assembly. Although many new genome sequences are generated by NGS, confirmation of the sequence by Sanger sequencing is still essential for formal classification by the International Committee for the Taxonomy of Viruses (ICTV), although this is currently under review. To empirically test the validity of de novo assembled mycovirus genomes from dsRNA extracts, we compared the results from Illumina sequencing with those from random cloning plus targeted PCR coupled with Sanger sequencing for viruses from five Sclerotinia sclerotiorum isolates. Through Sanger sequencing we detected nine viral genomes while through Illumina sequencing we detected the same nine viruses plus one additional virus from the same samples. Critically, the Illumina derived sequences share >99.3 % identity to those obtained by cloning and Sanger sequencing. Although, there is scope for errors in de novo assembled viral genomes, our results demonstrate that by maximising the proportion of viral sequence in the data and using sufficiently rigorous quality controls, it is possible to generate de novo genome sequences of comparable accuracy from Illumina sequencing to those obtained by Sanger sequencing.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Faculty of Sciences, Damietta University, Damietta, Egypt
| | - Arvind Varsani
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, FL 32611, USA
| | - Austen R D Ganley
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Michael N Pearson
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
26
|
Genome Sequences of Poaceae-Associated Gemycircularviruses from the Pacific Ocean Island of Tonga. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01144-15. [PMID: 26472826 PMCID: PMC4611678 DOI: 10.1128/genomea.01144-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We sampled and analyzed 43 Poaceae plants from the Pacific Ocean island of Tonga for the presence of circular DNA viruses. From these samples, we recovered three gemycircularvirus genomes, which share >99% identity, from Brachiaria deflexa (n = 2) and sugarcane (n = 1). These genomes share <61% genome-wide identity with other gemycircularvirus sequences in public databases.
Collapse
|
27
|
Li W, Gu Y, Shen Q, Yang S, Wang X, Wan Y, Zhang W. A novel gemycircularvirus from experimental rats. Virus Genes 2015; 51:302-5. [PMID: 26303898 DOI: 10.1007/s11262-015-1238-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/14/2015] [Indexed: 11/25/2022]
Abstract
Recently, gemycircularviruses have been found in humans and various species of animals. Here, a novel gemycircularvirus named Ch-zjrat-01 from blood samples of experimental rats was characterized. The novel gemycircularvirus encodes two major proteins, including a capsid protein (Cap) and a replication-associated protein (Rep). Phylogenetic analysis based on the amino acid sequence of Rep indicated that Ch-zjrat-01 clusters with two gemycircularviruses discovered from bird (KF371635) and mosquito (HQ335086), sharing 48.7 and 49.4 % sequence identities with them, respectively.
Collapse
Affiliation(s)
- Wang Li
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yu Gu
- Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yan Wan
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
28
|
Alfalfa Leaf Curl Virus: an Aphid-Transmitted Geminivirus. J Virol 2015; 89:9683-8. [PMID: 26109720 DOI: 10.1128/jvi.00453-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/19/2015] [Indexed: 12/15/2022] Open
Abstract
The family Geminiviridae comprises seven genera differentiated by genome organization, sequence similarity, and insect vector. Capulavirus, an eighth genus, has been proposed to accommodate two newly discovered highly divergent geminiviruses that presently have no known vector. Alfalfa leaf curl virus, identified here as a third capulavirus, is shown to be transmitted by Aphis craccivora. This is the first report of an aphid-transmitted geminivirus.
Collapse
|