1
|
Marino-Merlo F, Macchi B, Armenia D, Bellocchi MC, Ceccherini-Silberstein F, Mastino A, Grelli S. Focus on recently developed assays for detection of resistance/sensitivity to reverse transcriptase inhibitors. Appl Microbiol Biotechnol 2018; 102:9925-9936. [PMID: 30269214 DOI: 10.1007/s00253-018-9390-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/23/2022]
Abstract
The biology of HIV is rather complex due to high rate of replication, frequent recombination, and introduction of mutations. This gives rise to a number of distinct variants referred as quasispecies. In addition, the latency within reservoir allows the periodic reactivation of virus replication. The rapid replication of HIV allows immune response escape and establishment of resistance to therapy that can be acquired through drug selection and/or transmitted among individuals. This prompted, over the years, the development of a range of assays aimed to determine drug resistance and sensitivity, to be used both in clinical practice and in antiviral research. Reverse transcriptase (RT) inhibitors have an eminent place among the anti-HIV drugs, being constantly present from the beginning until today in the most commonly used antiviral regimens. This mini-review seeks to provide an up-to-date overview of recent efforts in developing even more reliable and simple methods, of both genotypic and phenotypic types, for specifically detecting drug resistance and sensitivity to RT inhibitors.
Collapse
Affiliation(s)
| | - Beatrice Macchi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Daniele Armenia
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | | | - Antonio Mastino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166, Messina, Italy. .,The Institute of Translational Pharmacology, CNR, Rome, Italy.
| | - Sandro Grelli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
2
|
Saladini F, Giannini A, Boccuto A, Vicenti I, Zazzi M. Agreement between an in-house replication competent and a reference replication defective recombinant virus assay for measuring phenotypic resistance to HIV-1 protease, reverse transcriptase, and integrase inhibitors. J Clin Lab Anal 2017; 32. [PMID: 28303602 DOI: 10.1002/jcla.22206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/21/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Although clinical management of drug resistance is routinely based on genotypic methods, phenotypic assays remain necessary for the characterization of novel HIV-1 inhibitors, particularly against common drug-resistant variants. We describe the development and assessment of the performance of a recombinant virus assay for measuring HIV-1 susceptibility to protease (PR), reverse transcriptase (RT), and integrase (IN) inhibitors. METHODS The system is based on the creation of replication-competent chimeric viruses through homologous recombination between patient or laboratory virus-derived PCR fragments and the corresponding NL4-3 vector where the whole Gag-PR, RT-RNaseH or IN coding regions has been deleted through inverse PCR. The susceptibility to nucleoside (NRTIs) and non-nucleoside (NNRTIs) RT inhibitors and to IN inhibitors (INIs) is calculated through a single-round infection assay in TZM-bl cells, while protease inhibitor (PI) activity is determined through a first round of infection in MT-2 cells followed by infection of TZM-bl cells with MT-2 supernatants. RESULTS The assay showed excellent reproducibility and accuracy when testing PI, NRTI, NNRTI, and INI susceptibility of drug-resistant clones previously characterized through the reference pseudoparticle-based Phenosense assay. The coefficient of interassay variation in fold change (FC) resistance was 12.0%-24.3% when assaying seven drug/clones pairs in three runs. FC values calculated by the Phenosense and in-house for 20 drug/clones pairs were in good agreement, with mean±SD ratio of 1.14±0.33 and no cases differing by more than twofold. CONCLUSIONS The described phenotypic assay can be adopted to evaluate the antiviral activity of licensed and investigational HIV-1 drugs targeting any of the three HIV-1 enzymes.
Collapse
Affiliation(s)
- Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Adele Boccuto
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Nowicka-Sans B, Protack T, Lin Z, Li Z, Zhang S, Sun Y, Samanta H, Terry B, Liu Z, Chen Y, Sin N, Sit SY, Swidorski JJ, Chen J, Venables BL, Healy M, Meanwell NA, Cockett M, Hanumegowda U, Regueiro-Ren A, Krystal M, Dicker IB. Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage. Antimicrob Agents Chemother 2016; 60:3956-69. [PMID: 27090171 PMCID: PMC4914680 DOI: 10.1128/aac.02560-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/03/2015] [Indexed: 12/26/2022] Open
Abstract
BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat.
Collapse
Affiliation(s)
- Beata Nowicka-Sans
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Tricia Protack
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Zeyu Lin
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Zhufang Li
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Sharon Zhang
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Yongnian Sun
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Himadri Samanta
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Brian Terry
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Zheng Liu
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Yan Chen
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Ny Sin
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Sing-Yuen Sit
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Jacob J Swidorski
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Jie Chen
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Brian L Venables
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Matthew Healy
- Bristol-Myers Squibb, Research and Development, Department of Genomics, Wallingford, Connecticut, USA
| | - Nicholas A Meanwell
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Mark Cockett
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Umesh Hanumegowda
- Bristol-Myers Squibb, Research and Development, Department of Preclinical Optimization, Wallingford, Connecticut, USA
| | - Alicia Regueiro-Ren
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Mark Krystal
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Ira B Dicker
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| |
Collapse
|