1
|
Tran LT, Green KJ, Rodriguez-Rodriguez M, Orellana GE, Funke CN, Nikolaeva OV, Quintero-Ferrer A, Chikh-Ali M, Woodell L, Olsen N, Karasev AV. Prevalence of Recombinant Strains of Potato Virus Y in Seed Potato Planted in Idaho and Washington States Between 2011 and 2021. PLANT DISEASE 2022; 106:810-817. [PMID: 34698520 DOI: 10.1094/pdis-08-21-1852-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potato virus Y (PVY) has emerged as the main reason for potato seed lot rejections, seriously affecting seed potato production in the United States throughout the past 20 years. The dynamics of PVY strain abundance and composition in various potato growing areas of the United States has not been well documented or understood up to now. The objective of this study was to find out the prevalence of PVY strains in potato fields in the Pacific Northwest (PNW), including seed potato production systems in the State of Idaho and commercial potato fields in the Columbia Basin of Washington State between 2011 and 2021. Based on the testing of >10,000 foliar samples during Idaho seed certification winter grow-out evaluations of seed potato lots and seed lot trials in Washington State, a dramatic shift in the PVY strain composition was revealed in the PNW between 2011 and 2016. During this time period, the prevalence of the ordinary, PVYO strain in seed potato dropped 8- to 10-fold, concomitantly with the rise of recombinant strains PVYN-Wi and PVYNTNa, which together accounted for 98% of all PVY positives by 2021. In Idaho seed potato, PVYNTNa strain associated with the potato tuber necrotic ringspot disease (PTNRD) was found to increase threefold between 2011 and 2019, accounting for 24% of all PVY positives in 2019. Mild foliar symptoms induced by recombinant PVY strains may be partially responsible for the proliferation of PVYN-Wi and PVYNTNa in potato crops. A spike of another PTNRD-associated recombinant, PVY-NE11, was recorded in the PNW between 2012 and 2016, but after reaching a 7 to 10% level in 2012 to 2013 this recombinant disappeared from the PNW potato by 2019. Whole genome sequence analysis of the PVY-NE11 suggested this recombinant was introduced in the United States at least three times. The data on PVY strain abundance in the PNW potato crops suggest that virus management strategies must consider the current dominance of the two recombinant PVY strains, PVYN-Wi and PVYNTNa.
Collapse
Affiliation(s)
- Lisa T Tran
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Kelsie J Green
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | | | - Gardenia E Orellana
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Cassandra N Funke
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Olga V Nikolaeva
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Arturo Quintero-Ferrer
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Mohamad Chikh-Ali
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Lynn Woodell
- Department of Plant Science, University of Idaho, Kimberly Research and Extension Center, Kimberly, ID 83844-2333
| | - Nora Olsen
- Department of Plant Science, University of Idaho, Kimberly Research and Extension Center, Kimberly, ID 83844-2333
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| |
Collapse
|
2
|
Cruzado-Gutiérrez RK, Sadeghi R, Prager SM, Casteel CL, Parker J, Wenninger EJ, Price WJ, Bosque-Pérez NA, Karasev AV, Rashed A. Interspecific interactions within a vector-borne complex are influenced by a co-occurring pathosystem. Sci Rep 2021; 11:2242. [PMID: 33500488 PMCID: PMC7838419 DOI: 10.1038/s41598-021-81710-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 11/25/2022] Open
Abstract
Potato virus Y (PVY) and zebra chip (ZC) disease are major threats to solanaceous crop production in North America. PVY can be spread by aphid vectors and through vegetative propagation in potatoes. ZC is associated with "Candidatus Liberibacter solanacearum" (Lso), which is transmitted by the tomato/potato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae). As these two pathosystems may co-occur, we studied whether the presence of one virus strain, PVY°, affected the host preference, oviposition, and egg hatch rate of Lso-free or Lso-carrying psyllids in tomato plants. We also examined whether PVY infection influenced Lso transmission success by psyllids, Lso titer and plant chemistry (amino acids, sugars, and phytohormones). Lso-carrying psyllids showed a preference toward healthy hosts, whereas the Lso-free psyllids preferentially settled on the PVY-infected tomatoes. Oviposition of the Lso-carrying psyllids was lower on PVY-infected than healthy tomatoes, but Lso transmission, titer, and psyllid egg hatch were not significantly affected by PVY. The induction of salicylic acid and its related responses, and not nutritional losses, may explain the reduced attractiveness of the PVY-infected host to the Lso-carrying psyllids. Although our study demonstrated that pre-existing PVY infection can reduce oviposition by the Lso-carrying vector, the preference of the Lso-carrying psyllids to settle on healthy hosts could contribute to Lso spread to healthy plants in the presence of PVY infection in a field.
Collapse
Affiliation(s)
- Regina K Cruzado-Gutiérrez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Aberdeen R&E Center, Aberdeen, ID, 83210, USA
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Rohollah Sadeghi
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Sean M Prager
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Clare L Casteel
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jessica Parker
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Erik J Wenninger
- Department of Entomology, Plant Pathology and Nematology, Kimberly Research & Extension Center, University of Idaho, Kimberly, ID, 83341, USA
| | - William J Price
- College of Agricultural and Life Sciences, Statistical Programs, University of Idaho, Moscow, ID, 83844, USA
| | - Nilsa A Bosque-Pérez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Arash Rashed
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Aberdeen R&E Center, Aberdeen, ID, 83210, USA.
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
3
|
Green KJ, Funke CN, Chojnacky J, Alvarez-Quinto RA, Ochoa JB, Quito-Avila DF, Karasev AV. Potato Virus Y (PVY) Isolates from Solanum betaceum Represent Three Novel Recombinants Within the PVY N Strain Group and Are Unable to Systemically Spread in Potato. PHYTOPATHOLOGY 2020; 110:1588-1596. [PMID: 32370660 DOI: 10.1094/phyto-04-20-0111-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tamarillo, or tree tomato (Solanum betaceum), is a perennial small tree or shrub species cultivated in subtropical areas for fresh fruit and juice production. In Ecuador, tamarillo orchards are affected by several viruses, with one previously identified as potato virus Y (PVY); however, the specific strain composition of PVY in tamarillo was not determined. In 2015 and 2016, eight tamarillo plants exhibiting symptoms of leaf drop, mosaic, and mottled fruit were sampled near Tumbaco and Quito, Ecuador. These tamarillo PVY isolates were able to systemically infect tobacco, Nicotiana benthamiana, naranjilla, and tamarillo. Seven of the eight PVY isolates from tamarillo exhibited N-serotype, while one of the PVY isolates studied, Tam15, had no identifiable serotype. One isolate, Tam17, had N-serotype but produced asymptomatic systemic infection in tobacco. In tamarillo, four tamarillo isolates induced mosaic and slight growth retardation and were unable to systemically infect pepper or potato. Tamarillo, on the other hand, was unable to support systemic infection of PVY isolates belonging to the PVYO and PVYEu-N strains. The whole genomes of eight PVY isolates were sequenced from a series of overlapping RT-PCR fragments. Phylogenetically, tamarillo PVY isolates were found to belong to the large PVYN lineage, in a new tamarillo clade. Recombination analysis revealed that these tamarillo PVY isolates represent at least three novel recombinant types not reported before. The combination of the biological and molecular properties found in these eight PVY isolates suggested the existence of a new tamarillo strain of PVY that may have coevolved with S. betaceum.
Collapse
Affiliation(s)
| | | | | | - Robert A Alvarez-Quinto
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Jose B Ochoa
- Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Quito, Ecuador
| | - Diego F Quito-Avila
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Alexander V Karasev
- Department of EPPN, University of Idaho, Moscow, ID
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID
| |
Collapse
|
4
|
Green KJ, Quintero-Ferrer A, Chikh-Ali M, Jones RAC, Karasev AV. Genetic Diversity of Nine Non-Recombinant Potato virus Y Isolates From Three Biological Strain Groups: Historical and Geographical Insights. PLANT DISEASE 2020; 104:2317-2323. [PMID: 32692623 DOI: 10.1094/pdis-02-20-0294-sc] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Potato virus Y (PVY) isolates from potato currently exist as a complex of six biologically defined strain groups all containing nonrecombinant isolates and at least 14 recombinant minor phylogroups. Recent studies on eight historical UK potato PVY isolates preserved since 1984 found only nonrecombinants. Here, four of five PVY isolates from cultivated potato or wild Solanum spp. collected recently in Australia, Mexico, and the U.S.A. were typed by inoculation to tobacco plants and/or serological testing using monoclonal antibodies. Next, these five modern isolates and four additional historical UK isolates belonging to biological strain groups PVYC, PVYZ, or PVYN obtained from cultivated potato in 1943 to 1984 were sequenced. None of the nine complete PVY genomes obtained were recombinants. Phylogenetic analysis revealed that the four historical UK isolates were in minor phylogroups PVYC1 (YC-R), PVYO-O (YZ-CM1), PVYNA-N (YN-M), or PVYEu-N (YN-RM), Australian isolate YO-BL2 was in minor phylogroup PVYO-O5, and both Mexican isolate YN-Mex43 and U.S.A. isolates YN-MT12_Oth288, YN-MT12_Oth295, and YN-WWAA150131G42 were in minor phylogroup PVYEu-N. When combined, these new findings and those from the eight historical UK isolates sequenced earlier provide important historical insights concerning the diversity of early PVY populations in Europe and the appearance of recombinants in that part of the world. They and four recent Australian isolates sequenced earlier also provide geographical insights about the geographical distribution and diversity of PVY populations in Australia and North America.
Collapse
Affiliation(s)
- Kelsie J Green
- Department of EPPN, University of Idaho, Moscow, ID, U.S.A
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, U.S.A
| | | | | | - Roger A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Alexander V Karasev
- Department of EPPN, University of Idaho, Moscow, ID, U.S.A
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, U.S.A
| |
Collapse
|
5
|
Maina S, Barbetti MJ, Edwards OR, Minemba D, Areke MW, Jones RAC. Genetic Connectivity Between Papaya Ringspot Virus Genomes from Papua New Guinea and Northern Australia, and New Recombination Insights. PLANT DISEASE 2019; 103:737-747. [PMID: 30856073 DOI: 10.1094/pdis-07-18-1136-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolates of papaya ringspot virus (PRSV) were obtained from plants of pumpkin (Cucurbita spp.) or cucumber (Cucumis sativus) showing mosaic symptoms growing at Zage in Goroka District in the Eastern Highland Province of Papua New Guinea (PNG) or Bagl in the Mount Hagen District, Western Highlands Province. The samples were sent to Australia on FTA cards where they were subjected to High Throughput Sequencing (HTS). When the coding regions of the six new PRSV genomic sequences obtained via HTS were compared with those of 54 other complete PRSV sequences from other parts of the world, all six grouped together with the 12 northern Australian sequences within major phylogroup B minor phylogroup I, the Australian sequences coming from three widely dispersed locations spanning the north of the continent. Notably, none of the PNG isolates grouped with genomic sequences from the nearby country of East Timor in phylogroup A. The closest genetic match between Australian and PNG sequences was a nucleotide (nt) sequence identity of 96.9%, whereas between PNG and East Timorese isolates it was only 83.1%. These phylogenetic and nt identity findings demonstrate genetic connectivity between PRSV populations from PNG and Australia. Recombination analysis of the 60 PRSV sequences available revealed evidence of 26 recombination events within 18 isolates, only four of which were within major phylogroup B and none of which were from PNG or Australia. Within the recombinant genomes, the P1, Cl, NIa-Pro, NIb, 6K2, and 5'UTR regions contained the highest numbers of recombination breakpoints. After removal of nonrecombinant sequences, four minor phylogroups were lost (IV, VII, VIII, XV), only one of which was in phylogroup B. When genome regions from which recombinationally derived tracts of sequence were removed from recombinants prior to alignment with nonrecombinant genomes, seven previous minor phylogroups within major phylogroup A, and two within major phylogroup B, merged either partially or entirely forming four merged minor phylogroups. The genetic connectivity between PNG and northern Australian isolates and absence of detectable recombination within either group suggests that PRSV isolates from East Timor, rather than PNG, might pose a biosecurity threat to northern Australian agriculture should they prove more virulent than those already present.
Collapse
Affiliation(s)
- Solomon Maina
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
| | - Martin J Barbetti
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
| | - Owain R Edwards
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
- 4 CSIRO Land and Water, Floreat Park, WA6014, Australia
| | - David Minemba
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 5 The National Agriculture Research Institute, P.O. Box 4415, Lae, Morobe Province, Papua New Guinea
| | - Michael W Areke
- 6 National Agriculture Quarantine and Inspection Authority, P.O. Box 741, Port Moresby, National Capital District, Papua New Guinea; and
| | - Roger A C Jones
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
- 7 Department of Primary Industries and Rural Development Food Western Australia, South Perth, WA, Australia
| |
Collapse
|
6
|
Maina S, Barbetti MJ, Martin DP, Edwards OR, Jones RAC. New Isolates of Sweet potato feathery mottle virus and Sweet potato virus C: Biological and Molecular Properties, and Recombination Analysis Based on Complete Genomes. PLANT DISEASE 2018; 102:1899-1914. [PMID: 30136885 DOI: 10.1094/pdis-12-17-1972-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sweet potato feathery mottle virus (SPFMV) and Sweet potato virus C (SPVC) isolates were obtained from sweetpotato shoot or tuberous root samples from three widely separated locations in Australia's tropical north (Cairns, Darwin, and Kununurra). The samples were planted in the glasshouse and scions obtained from the plants were graft inoculated to Ipomoea setosa plants. Virus symptoms were recorded in the field in Kununurra and in glasshouse-grown sweetpotato and I. setosa plants. RNA extracts from I. setosa leaf samples were subjected to high-throughput sequencing. New complete SPFMV (n = 17) and SPVC (n = 6) genomic sequences were obtained and compared with 47 sequences from GenBank. Phylogenetic analysis revealed that the 17 new SPFMV genomes all fitted within either major phylogroup A, minor phylogroup II, formerly O; or major phylogroup B, formerly RC. Major phylogroup A's minor phylogroup I, formerly EA, only appeared when recombinants were included. Numbers of SPVC genomes were insufficient to subdivide it into phylogroups. Within phylogroup A's minor phylogroup II, the closest genetic match between an Australian and a Southeast Asian SPFMV sequence was the 97.4% nucleotide identity with an East Timorese sequence. Recombination analysis of the 43 SPFMV and 27 SPVC sequences revealed evidence of 44 recombination events, 16 of which involved interspecies sequence transfers between SPFMV and SPVC and 28 intraspecies transfers, 17 in SPFMV and 11 in SPVC. Within SPFMV, 11 intraspecies recombination events were between different major phylogroups and 6 were between members of the same major phylogroup. Phylogenetic analysis accounting for the detected recombination events within SPFMV sequences yielded evidence of minor phylogroup II and phylogroup B but the five sequences from minor phylogroup I were distributed in two separate groups among the sequences of minor phylogroup II. For the SPVC sequences, phylogenetic analysis accounting for the detected recombination events revealed three major phylogroups (A, B, and C), with major phylogroup A being further subdivided into two minor phylogroups. Within the recombinant genomes of both viruses, their PI, NIa-Pro, NIb, and CP genes contained the highest numbers of recombination breakpoints. The high frequency of interspecies and interphylogroup recombination events reflects the widespread occurrence of mixed SPVC and SPFMV infections within sweetpotato plants. The prevalence of infection in northern Australian sweetpotato samples reinforces the need for improved virus testing in healthy sweetpotato stock programs. Furthermore, evidence of genetic connectivity between Australian and East Timorese SPFMV genomes emphasizes the need for improved biosecurity measures to protect against potentially damaging international virus movements.
Collapse
Affiliation(s)
- Solomon Maina
- School of Agriculture and Environment and the University of Western Australia (UWA) Institute of Agriculture, Faculty of Science, UWA, Crawley, WA 6009, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia
| | - Martin J Barbetti
- School of Agriculture and Environment and UWA Institute of Agriculture, Faculty of Science, UWA
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, Cape Town 7549, South Africa
| | - Owain R Edwards
- CSIRO Land and Water, Floreat Park, WA 6014, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia
| | - Roger A C Jones
- Department of Primary Industries and Rural Development, South Perth, WA 6151, Australia; UWA Institute of Agriculture, Faculty of Science, UWA
| |
Collapse
|
7
|
Jones RAC, Vincent SJ. Strain-Specific Hypersensitive and Extreme Resistance Phenotypes Elicited by Potato virus Y Among 39 Potato Cultivars Released in Three World Regions Over a 117-Year Period. PLANT DISEASE 2018; 102:185-196. [PMID: 30673468 DOI: 10.1094/pdis-06-17-0901-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Strain-specific hypersensitive (HR) and extreme resistance (ER) phenotypes elicited in potato plants by three Potato virus Y (PVY) isolates in strain groups PVYO (BL and DEL3) and PVYD (KIP1) were studied. PVYO and PVYD isolates elicit HR genes Ny or putative Nd, respectively, and all three isolates elicit ER gene Ry. They were inoculated to 39 Australasian, European, or North American potato cultivars released over a 117-year period and harvested tubers were replanted. Both primary and secondary symptoms were recorded. Two European cultivars always developed ER following sap and graft inoculation and, thus, carried comprehensive PVY resistance gene Ry. One Australasian and two European cultivars always developed susceptible phenotypes and, thus, lacked genes Ry, Ny, and putative Nd. Sap inoculation with isolate KIP1 elicited localized HR (LHR) in 31 cultivars and both LHR and systemic HR (SHR) in three others; thus, all carried putative Nd. Isolates BL and DEL3 both elicited susceptible phenotypes in 11 of these 34 cultivars but LHR alone, SHR alone, or both LHR and SHR in the other 23 which, therefore, all carry Ny. With these two isolates, SHR expression ranged from very severe to very weak, with the greatest numbers of isolate-cultivar combinations occurring in the severe category with BL (n = 11) and moderate category (n = 12) with DEL3. Within the same isolate-cultivar combination, overall, SHR symptom expression was weaker with secondary than primary infection. With both primary and secondary infection, SHR expression was most severe with KIP1 and weakest with DEL3. Genes Ny and putative Nd were present in cultivars released between 1939 and 2010 or 1893 and 2010, respectively, occurring in cultivars from all three world regions. These findings have important implications concerning breeding new PVY-resistant potato cultivars, especially for countries lacking healthy seed potato stocks, or where subsistence farmers cannot afford them. An alternative to including gene Ry is incorporating as many strain-specific PVY resistance genes as possible.
Collapse
Affiliation(s)
- Roger A C Jones
- Department of Agriculture and Food, Bentley Delivery Centre, WA 6983, Australia; and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA 6009, Australia
| | - Stuart J Vincent
- Department of Agriculture and Food, Bentley Delivery Centre, WA 6983, Australia
| |
Collapse
|
8
|
Green KJ, Chikh-Ali M, Hamasaki RT, Melzer MJ, Karasev AV. Potato virus Y (PVY) Isolates from Physalis peruviana are Unable to Systemically Infect Potato or Pepper and Form a Distinct New Lineage Within the PVY C Strain Group. PHYTOPATHOLOGY 2017; 107:1433-1439. [PMID: 28653578 DOI: 10.1094/phyto-04-17-0147-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poha, or cape gooseberry (Physalis peruviana L.), is a plant species cultivated in Hawaii for fresh fruit production. In 2015, an outbreak of virus symptoms occurred on poha farms in the South Kohala District of the island of Hawaii. The plants displayed mosaic, stunting, and leaf deformation, and produced poor fruit. Initial testing found the problem associated with Potato virus Y (PVY) infection. Six individual PVY isolates, named Poha1 to Poha6, were collected from field-grown poha plants and subjected to biological and molecular characterization. All six isolates induced mosaic and vein clearing in tobacco, and three of them exhibited O-serotype while the other three reacted only with polyclonal antibodies and had no identifiable serotype. Until now, PVY isolates have been broadly divided into pepper or potato adapted; however, these six PVY isolates from poha were unable to establish systemic infection in pepper and in four tested potato cultivars. Whole-genome sequences for the six isolates were determined, and no evidence of recombination was found in any of them. Phylogenetic analysis placed poha PVY isolates in a distinct, monophyletic "Poha" clade within the PVYC lineage, suggesting that they represented a novel, biologically and evolutionarily unique group. The genetic diversity within this poha PVYC clade was unusually high, suggesting a long association of PVYC with this solanaceous host or a prolonged geographical separation of PVYC in poha in Hawaii.
Collapse
Affiliation(s)
- Kelsie J Green
- First, second, and fifth authors: Department of PSES, University of Idaho, Moscow; third and fourth authors: University of Hawaii at Manoa, Honolulu; and fifth author: and Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - Mohamad Chikh-Ali
- First, second, and fifth authors: Department of PSES, University of Idaho, Moscow; third and fourth authors: University of Hawaii at Manoa, Honolulu; and fifth author: and Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - Randall T Hamasaki
- First, second, and fifth authors: Department of PSES, University of Idaho, Moscow; third and fourth authors: University of Hawaii at Manoa, Honolulu; and fifth author: and Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - Michael J Melzer
- First, second, and fifth authors: Department of PSES, University of Idaho, Moscow; third and fourth authors: University of Hawaii at Manoa, Honolulu; and fifth author: and Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - Alexander V Karasev
- First, second, and fifth authors: Department of PSES, University of Idaho, Moscow; third and fourth authors: University of Hawaii at Manoa, Honolulu; and fifth author: and Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| |
Collapse
|
9
|
Elwan EA, Abdel Aleem EE, Fattouh FA, Green KJ, Tran LT, Karasev AV. Occurrence of Diverse Recombinant Strains of Potato virus Y Circulating in Potato Fields in Egypt. PLANT DISEASE 2017; 101:1463-1469. [PMID: 30678584 DOI: 10.1094/pdis-02-17-0275-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Potato is one of the staple crops in Egypt, grown under irrigation almost continuously year-round. Potato virus Y (PVY) has been reported as one of the main viruses affecting potatoes in Egypt, but limited information is available on PVY strains circulating in potato fields in the country. From 2014 to 2016, virus surveys were conducted in several potato-growing governorates of Egypt, and PVY-positive samples were found to represent at least five distinct recombinant PVY strains, including PVYNTN and PVYN-Wi. Whole genome sequences were determined for four isolates representing strains PVY-SYR-III (Egypt7), PVY-261-4 (Egypt11), PVYNTNa (Egypt35), and a novel recombinant named Egypt24 that combined molecular properties of strains PVY-261-4 and PVY-Wilga156var. At least three recombinants found in Egypt in potato were previously found associated with potato tuber necrotic ringspot disease (PTNRD). The identification of multiple recombinant types of PVY in potato in Egypt, including the novel recombinant Egypt24, suggests a wide presence of PTNRD-inducing virus strains in the country.
Collapse
Affiliation(s)
- Esraa A Elwan
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Engy E Abdel Aleem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Faiza A Fattouh
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Kelsie J Green
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
| | - Lisa T Tran
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
| | - Alexander V Karasev
- Department of Plant, Soil, and Entomological Sciences, and Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844-2339
| |
Collapse
|
10
|
Phylogenetic study of recombinant strains of Potato virus Y. Virology 2017; 507:40-52. [DOI: 10.1016/j.virol.2017.03.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 11/19/2022]
|