1
|
Graziosi G, Lupini C, Favera FD, Martini G, Dosa G, Trevisani G, Garavini G, Mannelli A, Catelli E. Characterizing the domestic-wild bird interface through camera traps in an area at risk for avian influenza introduction in Northern Italy. Poult Sci 2024; 103:103892. [PMID: 38865769 PMCID: PMC11223120 DOI: 10.1016/j.psj.2024.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Direct or indirect interactions between sympatric wildlife and poultry can lead to interspecies disease transmission. Particularly, avian influenza (AI) is a viral epidemic disease for which the poultry-wild bird interface shapes the risks of new viral introductions into poultry holdings. Given this background, the study hereby presented aimed to identify wild bird species in poultry house surroundings and characterize the spatiotemporal patterns of these visits. Eight camera traps were deployed for a year (January to December 2021) in 3 commercial chicken layer farms, including free-range and barn-type setups, located in a densely populated poultry area in Northern Italy at high risk for AI introduction via wild birds. Camera traps' positions were chosen based on wildlife signs identified during preliminary visits to the establishments studied. Various methods, including time series analysis, correspondence analysis, and generalized linear models, were employed to analyze the daily wild bird visits. A total of 1,958 camera trap days yielded 5,978 videos of wild birds from 27 different species and 16 taxonomic families. The animals were predominantly engaged in foraging activities nearby poultry houses. Eurasian magpies (Pica pica), ring-necked pheasants (Phasianus colchicus), and Eurasian collared doves (Streptopelia decaocto) were the most frequent visitors. Mallards (Anas platyrhynchos), an AI reservoir species, were observed only in a farm located next to a fishing sport lake. Time series analysis indicated that wild bird visits increased during spring and winter. Farm and camera trap location also influenced visit frequencies. Overall, the results highlighted specific species that could be prioritized for future AI epidemiological surveys. However, further research is required to assess their susceptibility and infectivity to currently circulating AI viruses, essential for identifying novel bridge hosts.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Francesco Dalla Favera
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Gabriella Martini
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), Imola, Bologna 40026, Italy
| | - Geremia Dosa
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), Imola, Bologna 40026, Italy
| | | | - Gloria Garavini
- Veterinary Services of Eurovo Group, Imola, Bologna 40026, Italy
| | - Alessandro Mannelli
- Department of Veterinary Sciences, University of Torino, Grugliasco, Turin 10095, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| |
Collapse
|
2
|
A Review of Avian Influenza A Virus Associations in Synanthropic Birds. Viruses 2020; 12:v12111209. [PMID: 33114239 PMCID: PMC7690888 DOI: 10.3390/v12111209] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Avian influenza A viruses (IAV) have received significant attention due to the threat they pose to human, livestock, and wildlife health. In this review, we focus on what is known about IAV dynamics in less common avian species that may play a role in trafficking IAVs to poultry operations. Specifically, we focus on synanthropic bird species. Synanthropic species, otherwise known as peridomestic, are species that are ecologically associated with humans and anthropogenically modified landscapes, such as agricultural and urban areas. Aquatic birds such as waterfowl and shorebirds are the species most commonly associated with avian IAVs, and are generally considered the reservoir or maintenance hosts in the natural ecology of these viruses. Waterfowl and shorebirds are occasionally associated with poultry facilities, but are uncommon or absent in many areas, especially large commercial operations. In these cases, spillover hosts that share resources with both maintenance hosts and target hosts such as poultry may play an important role in introducing wild bird viruses onto farms. Consequently, our focus here is on what is known about IAV dynamics in synanthropic hosts that are commonly found on both farms and in nearby habitats, such as fields, lakes, wetlands, or riparian areas occupied by waterfowl or shorebirds.
Collapse
|
3
|
Nakayama M, Uchida Y, Shibata A, Kobayashi Y, Mine J, Takemae N, Tsunekuni R, Tanikawa T, Harada R, Osaka H, Saito T. A novel H7N3 reassortant originating from the zoonotic H7N9 highly pathogenic avian influenza viruses that has adapted to ducks. Transbound Emerg Dis 2019; 66:2342-2352. [PMID: 31293102 DOI: 10.1111/tbed.13291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Abstract
The first human case of zoonotic H7N9 avian influenza virus (AIV) infection was reported in March 2013 in China. This virus continues to circulate in poultry in China while mutating to highly pathogenic AIVs (HPAIVs). Through monitoring at airports in Japan, a novel H7N3 reassortant of the zoonotic H7N9 HPAIVs, A/duck/Japan/AQ-HE30-1/2018 (HE30-1), was detected in a poultry meat product illegally brought by a passenger from China into Japan. We analysed the genetic, pathogenic and antigenic characteristics of HE30-1 by comparing it with previous zoonotic H7N9 AIVs and their reassortants. Phylogenetic analysis of the entire HE30-1 genomic sequence revealed that it comprised at least three different sources; the HA (H7), PB1, PA, NP, M and NS segments of HE30-1 were directly derived from H7N9 AIVs, whereas the NA (N3) and PB2 segments of HE30-1 were unrelated to zoonotic H7N9. Experimental infection revealed that HE30-1 was lethal in chickens but not in domestic or mallard ducks. HE30-1 was shed from and replicated in domestic and mallard ducks and chickens, whereas previous zoonotic H7N9 AIVs have not adapted well to ducks. This finding suggests the possibility that HE30-1 may disseminate to remote area by wild bird migration once it establishes in wild bird population. A haemagglutination-inhibition assay indicated that antigenic drift has occurred among the reassortants of zoonotic H7N9 AIVs; HE30-1 showed similar antigenicity to some of those H7N9 AIVs, suggesting it might be prevented by the H5/H7 inactivated vaccine that was introduced in China in 2017. Our study reports the emergence of a new reassortant of zoonotic H7N9 AIVs with novel viral characteristics and warns of the challenge we still face to control the zoonotic H7N9 AIVs and their reassortants.
Collapse
Affiliation(s)
- Momoko Nakayama
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Akihiro Shibata
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Japan
| | - Yoshifumi Kobayashi
- Pathological and Physiochemical Examination Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Rieko Harada
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Japan
| | - Hiroyuki Osaka
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
4
|
Bosco-Lauth AM, Marlenee NL, Hartwig AE, Bowen RA, Root JJ. Shedding of clade 2.3.4.4 H5N8 and H5N2 highly pathogenic avian influenza viruses in peridomestic wild birds in the U.S. Transbound Emerg Dis 2019; 66:1301-1305. [PMID: 30740920 DOI: 10.1111/tbed.13147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/31/2022]
Abstract
European starlings (Sturnus vulgaris), house sparrows (Passer domesticus) and rock pigeons (Columba livia) are all wild birds commonly found in large numbers in and around human dwellings and domestic livestock operations. This study evaluated the susceptibility of these species to three strains of highly pathogenic avian influenza virus (HP AIV) clade 2.3.4.4 isolated in the U.S.. Experimental infection of European starlings and rock pigeons did not result in any overt signs attributable to AIV infection and no virus shedding was detected from the oral and cloacal routes. House sparrows shed by the oral route and exhibited limited mortality. Individuals from all three species seroconverted following infection. These data suggest that none of these birds are a likely potential bridge host for future HP AIV outbreaks but that their seroconversion may be a useful surveillance tool for detection of circulating H5 HP AIV.
Collapse
Affiliation(s)
| | | | | | | | - J Jeffrey Root
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado
| |
Collapse
|
5
|
Pathogenicity of two novel human-origin H7N9 highly pathogenic avian influenza viruses in chickens and ducks. Arch Virol 2018; 164:535-545. [PMID: 30539262 DOI: 10.1007/s00705-018-4102-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/27/2018] [Indexed: 12/31/2022]
Abstract
Human infection by low-pathogenic avian influenza viruses of the H7N9 subtype was first reported in March 2013 in China. Subsequently, these viruses caused five outbreaks through September 2017. In the fifth outbreak, H7N9 virus possessing a multiple basic amino acid insertion in the cleavage site of hemagglutinin emerged and caused 4% of all human infections in that period. To date, H7N9 highly pathogenic avian influenza viruses (HPAIVs) have been isolated from poultry, mostly chickens, as well as the environment. To evaluate the relative infectivity of these viruses in poultry, chickens and ducks were subjected to experimental infection with two H7N9 HPAIVs isolated from humans, namely A/Guangdong/17SF003/2016 and A/Taiwan/1/2017. When chickens were inoculated with the HPAIVs at a dose of 106 50% egg infectious dose (EID50), all chickens died within 2-5 days after inoculation, and the viruses replicated in most of the internal organs examined. The 50% lethal doses of A/Guangdong/17SF003/2016 and A/Taiwan/1/2017 in chickens were calculated as 103.3 and 104.7 EID50, respectively. Conversely, none of the ducks inoculated with either virus displayed any clinical signs, and less-efficient virus replication and less shedding were observed in ducks compared to chickens. These findings indicate that chickens, but not ducks, are highly permissive hosts for emerging H7N9 HPAIVs.
Collapse
|
6
|
Gonzales JL, Roberts H, Smietanka K, Baldinelli F, Ortiz-Pelaez A, Verdonck F. Assessment of low pathogenic avian influenza virus transmission via raw poultry meat and raw table eggs. EFSA J 2018; 16:e05431. [PMID: 32625713 PMCID: PMC7009628 DOI: 10.2903/j.efsa.2018.5431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A rapid qualitative assessment has been done by performing a theoretical analysis on the transmission of low pathogenic avian influenza (LPAI) via fresh meat from poultry reared or kept in captivity for the production of meat (raw poultry meat) or raw table eggs. A predetermined transmission pathway followed a number of steps from a commercial or non-commercial poultry establishment within the EU exposed to LPAI virus (LPAIV) to the onward virus transmission to animals and humans. The combined probability of exposure and subsequent LPAIV infection via raw poultry meat containing LPAIV is negligible for commercial poultry and humans exposed via consumption whereas it is very unlikely for non-commercial poultry, wild birds and humans exposed via handling and manipulation. The probability of LPAIV transmission from an individual infected via raw poultry meat containing LPAIV is negligible for commercial poultry and humans, whereas it is very unlikely for non-commercial poultry and wild birds. The combined probability of exposure and subsequent LPAIV infection via raw table eggs containing LPAIV is negligible for commercial poultry and humans and extremely unlikely to negligible for non-commercial poultry and wild birds. The probability of LPAIV transmission from an individual infected via raw table eggs containing LPAIV is negligible for commercial poultry and humans and very unlikely to negligible for non-commercial poultry and wild birds. Although the presence of LPAIV in raw poultry meat and table eggs is very unlikely to negligible, there is in general a high level of uncertainty on the estimation of the subsequent probabilities of key steps of the transmission pathways for poultry and wild birds, mainly due to the limited number of studies available, for instance on the viral load required to infect a bird via raw poultry meat or raw table eggs containing LPAIV.
Collapse
|
7
|
Human infections with avian influenza viruses in mainland China: A particular risk for southeastern China. J Infect 2017; 75:274-276. [DOI: 10.1016/j.jinf.2017.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
|