1
|
Peláez ML, Horreo JL, García-Jiménez R, Valdecasas AG. An evaluation of errors in the mitochondrial COI sequences of Hydrachnidia (Acari, Parasitengona) in public databases. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:371-384. [PMID: 35212872 PMCID: PMC11602793 DOI: 10.1007/s10493-022-00703-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Public molecular databases are fundamental tools for modern taxonomic studies whose usefulness rely on the soundness of the data within them. Here, we study potential errors that can arise along the data pipeline from sampling, specimen identification and molecular processing (digestion, amplification and sequencing) to the submission of sequences to these databases by using the DNA sequences of Hydrachnidia (Acari, Parasitengona) as a case study. Our results indicate that molecular information is available for only about 3% of the Hydrachnidia species known to date; yet, within this small percentage, errors are present in almost 5% of the species analyzed (0.5% of the sequences and almost 11% of the genera). This study underscores the scarcity of genetic data available for Hydrachnidia, but also that the proportion of errors in DNA sequences is relatively small. Even so, it highlights the danger associated with using DNA sequences from public databases, particularly for species identification, and reinforces the need for greater quality control measures and/or protocols to avoid an intensification of errors in the (post) genomics era. Finally, our study emphasizes that potential errors may also reveal cryptic diversity within a species.
Collapse
Affiliation(s)
- María L Peláez
- Museo Nacional de Ciencias Naturales, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain.
| | - José L Horreo
- UMIB Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University - Campus Mieres, C/Gonzalo Gutiérrez Quirós s/n, 33600, Mieres, Spain
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, C/Jose Antonio Novais 12, 28040, Madrid, Spain
| | | | - Antonio G Valdecasas
- Museo Nacional de Ciencias Naturales, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| |
Collapse
|
2
|
Lambert C, Couteaudier M, Gouzil J, Richard L, Montange T, Betsem E, Rua R, Tobaly-Tapiero J, Lindemann D, Njouom R, Mouinga-Ondémé A, Gessain A, Buseyne F. Potent neutralizing antibodies in humans infected with zoonotic simian foamy viruses target conserved epitopes located in the dimorphic domain of the surface envelope protein. PLoS Pathog 2018; 14:e1007293. [PMID: 30296302 PMCID: PMC6193739 DOI: 10.1371/journal.ppat.1007293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/18/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Human diseases of zoonotic origin are a major public health problem. Simian foamy viruses (SFVs) are complex retroviruses which are currently spilling over to humans. Replication-competent SFVs persist over the lifetime of their human hosts, without spreading to secondary hosts, suggesting the presence of efficient immune control. Accordingly, we aimed to perform an in-depth characterization of neutralizing antibodies raised by humans infected with a zoonotic SFV. We quantified the neutralizing capacity of plasma samples from 58 SFV-infected hunters against primary zoonotic gorilla and chimpanzee SFV strains, and laboratory-adapted chimpanzee SFV. The genotype of the strain infecting each hunter was identified by direct sequencing of the env gene amplified from the buffy coat with genotype-specific primers. Foamy virus vector particles (FVV) enveloped by wild-type and chimeric gorilla SFV were used to map the envelope region targeted by antibodies. Here, we showed high titers of neutralizing antibodies in the plasma of most SFV-infected individuals. Neutralizing antibodies target the dimorphic portion of the envelope protein surface domain. Epitopes recognized by neutralizing antibodies have been conserved during the cospeciation of SFV with their nonhuman primate host. Greater neutralization breadth in plasma samples of SFV-infected humans was statistically associated with smaller SFV-related hematological changes. The neutralization patterns provide evidence for persistent expression of viral proteins and a high prevalence of coinfection. In conclusion, neutralizing antibodies raised against zoonotic SFV target immunodominant and conserved epitopes located in the receptor binding domain. These properties support their potential role in restricting the spread of SFV in the human population.
Collapse
Affiliation(s)
- Caroline Lambert
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Institut Pasteur, Paris, France
| | - Mathilde Couteaudier
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Julie Gouzil
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Léa Richard
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Institut Pasteur, Paris, France
| | - Thomas Montange
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Edouard Betsem
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- University of Yaounde I, Yaounde, Cameroon
| | - Réjane Rua
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Joelle Tobaly-Tapiero
- CNRS UMR 7212, INSERM U944, Institut Universitaire d’Hématologie, Hôpital Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Richard Njouom
- Laboratoire de Virologie, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Augustin Mouinga-Ondémé
- Unité de Rétrovirologie, Centre International de Recherche Médicale de Franceville, Franceville, Gabon
| | - Antoine Gessain
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Florence Buseyne
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
3
|
Khan AS, Bodem J, Buseyne F, Gessain A, Johnson W, Kuhn JH, Kuzmak J, Lindemann D, Linial ML, Löchelt M, Materniak-Kornas M, Soares MA, Switzer WM. Spumaretroviruses: Updated taxonomy and nomenclature. Virology 2018; 516:158-164. [PMID: 29407373 PMCID: PMC11318574 DOI: 10.1016/j.virol.2017.12.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 01/28/2023]
Abstract
Spumaretroviruses, commonly referred to as foamy viruses, are complex retroviruses belonging to the subfamily Spumaretrovirinae, family Retroviridae, which naturally infect a variety of animals including nonhuman primates (NHPs). Additionally, cross-species transmissions of simian foamy viruses (SFVs) to humans have occurred following exposure to tissues of infected NHPs. Recent research has led to the identification of previously unknown exogenous foamy viruses, and to the discovery of endogenous spumaretrovirus sequences in a variety of host genomes. Here, we describe an updated spumaretrovirus taxonomy that has been recently accepted by the International Committee on Taxonomy of Viruses (ICTV) Executive Committee, and describe a virus nomenclature that is generally consistent with that used for other retroviruses, such as lentiviruses and deltaretroviruses. This taxonomy can be applied to distinguish different, but closely related, primate (e.g., human, ape, simian) foamy viruses as well as those from other hosts. This proposal accounts for host-virus co-speciation and cross-species transmission.
Collapse
Affiliation(s)
- Arifa S Khan
- Laboratory of Retroviruses, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jochen Bodem
- Institut für Virologie und Immunbiologie, Universität Würzburg, Würzburg, Germany
| | - Florence Buseyne
- Unit of Epidemiology and Physiopathology of Oncogenic Viruses, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, CNRS UMR3569, Paris, France
| | - Antoine Gessain
- Unit of Epidemiology and Physiopathology of Oncogenic Viruses, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, CNRS UMR3569, Paris, France
| | - Welkin Johnson
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Jacek Kuzmak
- Department of Biochemistry, National Veterinary Research Institute, Puławy, Poland
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Maxine L Linial
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Martin Löchelt
- Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | | | - Marcelo A Soares
- Instituto Nacional de Câncer and Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|