1
|
Khalili M, Candresse T, Koloniuk I, Safarova D, Brans Y, Faure C, Delmas M, Massart S, Aranda MA, Caglayan K, Decroocq V, Drogoudi P, Glasa M, Pantelidis G, Navratil M, Latour F, Spak J, Pribylova J, Mihalik D, Palmisano F, Saponari A, Necas T, Sedlak J, Marais A. The Expanding Menagerie of Prunus-Infecting Luteoviruses. PHYTOPATHOLOGY 2023; 113:345-354. [PMID: 35972890 DOI: 10.1094/phyto-06-22-0203-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Members of the genus Luteovirus are responsible for economically destructive plant diseases worldwide. Over the past few years, three luteoviruses infecting Prunus trees have been characterized. However, the biological properties, prevalence, and genetic diversity of those viruses have not yet been studied. High-throughput sequencing of samples of various wild, cultivated, and ornamental Prunus species enabled the identification of four novel species in the genus Luteovirus for which we obtained complete or nearly complete genomes. Additionally, we identified another new putative species recovered from Sequence Read Archive data. Furthermore, we conducted a survey on peach-infecting luteoviruses in eight European countries. Analyses of 350 leaf samples collected from germplasm, production orchards, and private gardens showed that peach-associated luteovirus (PaLV), nectarine stem pitting-associated virus (NSPaV), and a novel luteovirus, peach-associated luteovirus 2 (PaLV2), are present in all countries; the most prevalent virus was NSPaV, followed by PaLV. The genetic diversity of these viruses was also analyzed. Moreover, the biological indexing on GF305 peach indicator plants demonstrated that PaLV and PaLV2, like NSPaV, are transmitted by graft at relatively low rates. No clear viral symptoms have been observed in either graft-inoculated GF305 indicators or different peach tree varieties observed in an orchard. The data generated during this study provide a broader overview of the genetic diversity, geographical distribution, and prevalence of peach-infecting luteoviruses and suggest that these viruses are likely asymptomatic in peach under most circumstances.
Collapse
Affiliation(s)
- Maryam Khalili
- Université de Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
| | | | - Igor Koloniuk
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Dana Safarova
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Yoann Brans
- Laboratoire de Virologie et de Biologie Moléculaire, CTIFL, Prigonrieux, France
| | - Chantal Faure
- Université de Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
| | - Marine Delmas
- INRAE, Unité Expérimentale Arboricole, Toulenne, France
| | - Sébastien Massart
- Laboratory of Plant Pathology, TERRA, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Miguel A Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Murcia, Spain
| | - Kadriye Caglayan
- Department of Plant Protection, Hatay Mustafa Kemal University, Antakya, Hatay, Turkey
| | | | - Pavlina Drogoudi
- Department of Deciduous Fruit Trees, Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Naoussa, Greece
| | - Miroslav Glasa
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Trnava, Slovakia
| | - George Pantelidis
- Department of Deciduous Fruit Trees, Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Naoussa, Greece
| | - Milan Navratil
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - François Latour
- Laboratoire de Virologie et de Biologie Moléculaire, CTIFL, Prigonrieux, France
| | - Josef Spak
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jaroslava Pribylova
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Daniel Mihalik
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Trnava, Slovakia
| | - Francesco Palmisano
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura "Basile Caramia", Locorotondo, Italy
| | - Antonella Saponari
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura "Basile Caramia", Locorotondo, Italy
| | - Tomas Necas
- Department of Fruit Science, Faculty of Horticulture, Mendel University, Lednice, Czech Republic
| | - Jiri Sedlak
- Vyzkumny A Slechtitelsky Ustav Ovocnarsky, Holovousy, Czech Republic
| | - Armelle Marais
- Université de Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
| |
Collapse
|
2
|
Hou W, Li S, Massart S. Is There a "Biological Desert" With the Discovery of New Plant Viruses? A Retrospective Analysis for New Fruit Tree Viruses. Front Microbiol 2020; 11:592816. [PMID: 33329473 PMCID: PMC7710903 DOI: 10.3389/fmicb.2020.592816] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
High throughput sequencing technologies accelerated the pace of discovery and identification of new viral species. Nevertheless, biological characterization of a new virus is a complex and long process, which can hardly follow the current pace of virus discovery. This review has analyzed 78 publications of new viruses and viroids discovered from 32 fruit tree species since 2011. The scientific biological information useful for a pest risk assessment and published together with the discovery of a new fruit tree virus or viroid has been analyzed. In addition, the 933 publications citing at least one of these original publications were reviewed, focusing on the biology-related information provided. In the original publications, the scientific information provided was the development of a detection test (94%), whole-genome sequence including UTRs (92%), local and large-scale epidemiological surveys (68%), infectivity and indicators experiments (50%), association with symptoms (25%), host range infection (23%), and natural vector identification (8%). The publication of a new virus is cited 2.8 times per year on average. Only 18% of the citations reported information on the biology or geographical repartition of the new viruses. These citing publications improved the new virus characterization by identifying the virus in a new country or continent, determining a new host, developing a new diagnostic test, studying genome or gene diversity, or by studying the transmission. Based on the gathered scientific information on the virus biology, the fulfillment of a recently proposed framework has been evaluated. A baseline prioritization approach for publishing a new plant virus is proposed for proper assessment of the potential risks caused by a newly identified fruit tree virus.
Collapse
Affiliation(s)
- Wanying Hou
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, China
- Plant Pathology Laboratory, TERRA, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shifang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sebastien Massart
- Plant Pathology Laboratory, TERRA, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
3
|
Identification and characterization of a novel rhabdovirus infecting peach in China. Virus Res 2020; 280:197905. [PMID: 32105763 DOI: 10.1016/j.virusres.2020.197905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
Abstract
A novel negative-sense, single-stranded (ss) RNA virus was identified in peach trees by high-throughput sequencing, and named peach virus 1 (PeV1). The genome of PeV1 consists of 13,949 nucleotides (nt), and its organization is typical of rhabdoviruses with six open reading frames (ORFs) encoding deduced proteins N-P-P3-M-G-L on the antisense strand. These ORFs are separated by highly conserved intergenic sequences and flanked by complementary 3'-leader and 5'-trailer sequences. PeV1 shared highest complete genome (41.9%), N amino acid (43.6%), G amino acid (41.0%), and L amino acid (42.7%) identities with viruses which belong to the genus Alphanucleorhabdovirus, suggesting it may belong to a new species. This was further supported by phylogenetic analyses using amino acid sequences of N, G, and L proteins, in which this virus is always clustered with alphanucleorhabdoviruses. Collectively, results suggest that PeV1 is a member of a new alphanucleorhabdovirus species. Moreover, bioassays revealed that it could be transmitted through grafting. The findings expand our knowledge of peach-infecting viruses and alphanucleorhabdoviruses.
Collapse
|
5
|
Maliogka VI, Minafra A, Saldarelli P, Ruiz-García AB, Glasa M, Katis N, Olmos A. Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies. Viruses 2018; 10:E436. [PMID: 30126105 PMCID: PMC6116224 DOI: 10.3390/v10080436] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches. A high number of new viruses have been described in the last 5 years, some of them exhibiting novel genomic features that have led to the proposal of the creation of new genera, and the revision of the current virus taxonomy status. Interestingly, several of the newly identified viruses belong to virus genera previously unknown to infect fruit tree species (e.g., Fabavirus, Luteovirus) a fact that challenges our perspective of plant viruses in general. Finally, applied methodologies, including the use of different molecules as templates, as well as advantages and disadvantages and future directions of HTS in fruit tree virology are discussed.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Angelantonio Minafra
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy.
| | - Pasquale Saldarelli
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy.
| | - Ana B Ruiz-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain.
| | - Miroslav Glasa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovak Republic.
| | - Nikolaos Katis
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain.
| |
Collapse
|