1
|
de Azevedo BL, Queiroz VF, de Aquino ILM, Machado TB, de Assis FL, Reis E, Araújo Júnior JP, Ullmann LS, Colson P, Greub G, Aylward F, Rodrigues RAL, Abrahão JS. The genomic and phylogenetic analysis of Marseillevirus cajuinensis raises questions about the evolution of Marseilleviridae lineages and their taxonomical organization. J Virol 2024; 98:e0051324. [PMID: 38752754 PMCID: PMC11237802 DOI: 10.1128/jvi.00513-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 06/14/2024] Open
Abstract
Marseilleviruses (MsV) are a group of viruses that compose the Marseilleviridae family within the Nucleocytoviricota phylum. They have been found in different samples, mainly in freshwater. MsV are classically organized into five phylogenetic lineages (A/B/C/D/E), but the current taxonomy does not fully represent all the diversity of the MsV lineages. Here, we describe a novel strain isolated from a Brazilian saltwater sample named Marseillevirus cajuinensis. Based on genomics and phylogenetic analyses, M. cajuinensis exhibits a 380,653-bp genome that encodes 515 open reading frames. Additionally, M. cajuinensis encodes a transfer RNA, a feature that is rarely described for Marseilleviridae. Phylogeny suggests that M. cajuinensis forms a divergent branch within the MsV lineage A. Furthermore, our analysis suggests that the common ancestor for the five classical lineages of MsV diversified into three major groups. The organization of MsV into three main groups is reinforced by a comprehensive analysis of clusters of orthologous groups, sequence identities, and evolutionary distances considering several MsV isolates. Taken together, our results highlight the importance of discovering new viruses to expand the knowledge about known viruses that belong to the same lineages or families. This work proposes a new perspective on the Marseilleviridae lineages organization that could be helpful to a future update in the taxonomy of the Marseilleviridae family. IMPORTANCE Marseilleviridae is a family of viruses whose members were mostly isolated from freshwater samples. In this work, we describe the first Marseillevirus isolated from saltwater samples, which we called Marseillevirus cajuinensis. Most of M. cajuinensis genomic features are comparable to other Marseilleviridae members, such as its high number of unknown proteins. On the other hand, M. cajuinensis encodes a transfer RNA, which is a gene category involved in protein translation that is rarely described in this viral family. Additionally, our phylogenetic analyses suggested the existence of, at least, three major Marseilleviridae groups. These observations provide a new perspective on Marseilleviridae lineages organization, which will be valuable in future updates to the taxonomy of the family since the current official classification does not capture all the Marseilleviridae known diversity.
Collapse
Affiliation(s)
- Bruna Luiza de Azevedo
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Victória Fulgêncio Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Isabella Luiza Martins de Aquino
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Talita Bastos Machado
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Lopes de Assis
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Erik Reis
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - João Pessoa Araújo Júnior
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Chácara Capão Bonito, Botucatu, Brazil
| | - Leila Sabrina Ullmann
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Chácara Capão Bonito, Botucatu, Brazil
| | - Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria and Giant Viruses, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Frank Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease Virginia Tech, Blacksburg, Virginia, USA
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Upadhyay M, Nair D, Moseley GW, Srivastava S, Kondabagil K. Giant Virus Global Proteomics Innovation: Comparative Evaluation of In-Gel and In-Solution Digestion Methods. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:170-181. [PMID: 38621149 DOI: 10.1089/omi.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
With their unusually large genome and particle sizes, giant viruses (GVs) defy the conventional definition of viruses. Although most GVs isolated infect unicellular protozoans, such as amoeba, studies in the last decade have established their much wider prevalence infecting most eukaryotic supergroups and some giant viral families with the potential to be human pathogens. Their complexity, almost autonomous life cycle, and enigmatic evolution necessitate the study of GVs. The accurate assessment of GV proteome is a veritable challenge. We have compared the coverage of global protein identification using different methods for GVs isolated in Mumbai, Mimivirus Bombay (MVB), Powai Lake Megavirus (PLMV), and Kurlavirus (KV), along with two previously studied GVs, Acanthamoeba polyphaga Mimivirus (APMV) and Marseillevirus (MV). Our study shows that the simultaneous use of in-gel and in-solution digestion methods can significantly increase the coverage of protein identification in the global proteome analysis of purified GV particles. Combining the two methods of analyses, we identified an additional 72 proteins in APMV and 114 in MV compared with what have been previously reported. Similarly, proteomes of MVB, PLMV, and KV were analyzed, and a total of 242 proteins in MVB, 287 proteins in PLMV, and 174 proteins in KV were identified. Our results suggest that a combined methodology of in-gel and in-solution methods is more efficient and opens up new avenues for innovation in global proteome analysis of GVs. Future planetary health research on GVs can benefit from consideration of a broader range of proteomics methodologies as illustrated by the present study.
Collapse
Affiliation(s)
- Monica Upadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Divya Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
3
|
Aoki K, Fukaya S, Takahashi H, Kobayashi M, Sasaki K, Takemura M. Marseilleviridae Lineage B Diversity and Bunch Formation Inhibited by Galactose. Microbes Environ 2021; 36. [PMID: 33612562 PMCID: PMC7966940 DOI: 10.1264/jsme2.me20139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Marseilleviridae is a family of large double-stranded DNA viruses that is currently divided into five subgroups, lineages A–E. Hokutovirus and kashiwazakivirus, both of which belong to lineage B, have been reported to induce host acanthamoeba cells to form aggregations called “bunches”. This putatively results in increased opportunities to infect acanthamoeba cells, in contrast to lineage A, which has been reported to not form “bunches”. In the present study, we isolated 14 virus strains of the family Marseilleviridae from several Japanese water samples, 11 of which were identified as lineage B viruses. All 11 lineage B strains caused infected amoeba cells to form bunches. We then investigated the involvement of monosaccharides in bunch formation by amoeba cells infected with hokutovirus. Galactose inhibited bunch formation, thereby allowing amoeba cells to delay the process, whereas mannose and glucose did not. A kinetic image analysis of hokutovirus-infected amoeba cells confirmed the inhibition of bunch formation by galactose. The number of hokutovirus-infected amoeba cells increased more rapidly than that of tokyovirus-infected cells, which belongs to lineage A. This result suggests that bunch formation by infected amoeba cells is advantageous for lineage B viruses.
Collapse
Affiliation(s)
- Keita Aoki
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science
| | - Sho Fukaya
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science
| | - Haruna Takahashi
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science
| | - Mio Kobayashi
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science
| | - Kenta Sasaki
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science
| | - Masaharu Takemura
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science.,Laboratory of Biology, Faculty of Science Division I, Tokyo University of Science
| |
Collapse
|
4
|
Sahmi-Bounsiar D, Rolland C, Aherfi S, Boudjemaa H, Levasseur A, La Scola B, Colson P. Marseilleviruses: An Update in 2021. Front Microbiol 2021; 12:648731. [PMID: 34149639 PMCID: PMC8208085 DOI: 10.3389/fmicb.2021.648731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023] Open
Abstract
The family Marseilleviridae was the second family of giant viruses that was described in 2013, after the family Mimiviridae. Marseillevirus marseillevirus, isolated in 2007 by coculture on Acanthamoeba polyphaga, is the prototype member of this family. Afterward, the worldwide distribution of marseilleviruses was revealed through their isolation from samples of various types and sources. Thus, 62 were isolated from environmental water, one from soil, one from a dipteran, one from mussels, and two from asymptomatic humans, which led to the description of 67 marseillevirus isolates, including 21 by the IHU Méditerranée Infection in France. Recently, five marseillevirus genomes were assembled from deep sea sediment in Norway. Isolated marseilleviruses have ≈250 nm long icosahedral capsids and 348–404 kilobase long mosaic genomes that encode 386–545 predicted proteins. Comparative genomic analyses indicate that the family Marseilleviridae includes five lineages and possesses a pangenome composed of 3,082 clusters of genes. The detection of marseilleviruses in both symptomatic and asymptomatic humans in stool, blood, and lymph nodes, and an up-to-30-day persistence of marseillevirus in rats and mice, raise questions concerning their possible clinical significance that are still under investigation.
Collapse
Affiliation(s)
- Dehia Sahmi-Bounsiar
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Clara Rolland
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Sarah Aherfi
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Hadjer Boudjemaa
- IHU Méditerranée Infection, Marseille, France.,Department of Biology, Faculty of Natural Science and Life, Hassiba Benbouali University of Chlef, Chlef, Algeria
| | - Anthony Levasseur
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| |
Collapse
|
5
|
Blanca L, Christo-Foroux E, Rigou S, Legendre M. Comparative Analysis of the Circular and Highly Asymmetrical Marseilleviridae Genomes. Viruses 2020; 12:E1270. [PMID: 33171839 PMCID: PMC7695187 DOI: 10.3390/v12111270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Marseilleviridae members are large dsDNA viruses with icosahedral particles 250 nm in diameter infecting Acanthamoeba. Their 340 to 390 kb genomes encode 450 to 550 protein-coding genes. Since the discovery of marseillevirus (the prototype of the family) in 2009, several strains were isolated from various locations, among which 13 are now fully sequenced. This allows the organization of their genomes to be deciphered through comparative genomics. Here, we first experimentally demonstrate that the Marseilleviridae genomes are circular. We then acknowledge a strong bias in sequence conservation, revealing two distinct genomic regions. One gathers most Marseilleviridae paralogs and has undergone genomic rearrangements, while the other, enriched in core genes, exhibits the opposite pattern. Most of the genes whose protein products compose the viral particles are located in the conserved region. They are also strongly biased toward a late gene expression pattern. We finally discuss the potential advantages of Marseilleviridae having a circular genome, and the possible link between the biased distribution of their genes and the transcription as well as DNA replication mechanisms that remain to be characterized.
Collapse
Affiliation(s)
| | | | | | - Matthieu Legendre
- CNRS, IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Aix Marseille Univ., 13288 Marseille, France; (L.B.); (E.C.-F.); (S.R.)
| |
Collapse
|
6
|
Abstract
DNA methylation is an important epigenetic mark that contributes to various regulations in all domains of life. Giant viruses are widespread dsDNA viruses with gene contents overlapping the cellular world that also encode DNA methyltransferases. Yet, virtually nothing is known about the methylation of their DNA. Here, we use single-molecule real-time sequencing to study the complete methylome of a large spectrum of giant viruses. We show that DNA methylation is widespread, affecting 2/3 of the tested families, although unevenly distributed. We also identify the corresponding viral methyltransferases and show that they are subject to intricate gene transfers between bacteria, viruses and their eukaryotic host. Most methyltransferases are conserved, functional and under purifying selection, suggesting that they increase the viruses' fitness. Some virally encoded methyltransferases are also paired with restriction endonucleases forming Restriction-Modification systems. Our data suggest that giant viruses' methyltransferases are involved in diverse forms of virus-pathogens interactions during coinfections.
Collapse
|
7
|
Rodrigues RAL, Louazani AC, Picorelli A, Oliveira GP, Lobo FP, Colson P, La Scola B, Abrahão JS. Analysis of a Marseillevirus Transcriptome Reveals Temporal Gene Expression Profile and Host Transcriptional Shift. Front Microbiol 2020; 11:651. [PMID: 32390970 PMCID: PMC7192143 DOI: 10.3389/fmicb.2020.00651] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/22/2020] [Indexed: 12/17/2022] Open
Abstract
Marseilleviruses comprise a family of large double-stranded DNA viruses belonging to the proposed order "Megavirales." These viruses have a circular genome of ∼370 kbp, coding hundreds of genes. Over a half of their genes are associated with AT-rich putative promoter motifs, which have been demonstrated to be important for gene regulation. However, the transcriptional profile of Marseilleviruses is currently unknown. Here we used RNA sequencing technology to get a general transcriptional profile of Marseilleviruses. Eight million 75-bp-long nucleotide sequences were robustly mapped to all 457 genes initially predicted for Marseillevirus isolate T19, the prototype strain of the family, and we were able to assemble 359 viral contigs using a genome-guided approach with stringent parameters. These reads were differentially mapped to the genes according to the replicative cycle time point from which they were obtained. Cluster analysis indicated the existence of three main temporal categories of gene expression, early, intermediate and late, which were validated by quantitative reverse transcription polymerase chain reaction assays targeting several genes. Genes belonging to different functional groups exhibited distinct expression levels throughout the infection cycle. We observed that the previously predicted promoter motif, AAATATTT, as well as new predicted motifs, were not specifically related to any of the temporal or functional classes of genes, suggesting that other components are involved in temporally regulating virus transcription. Moreover, the host transcription machinery is heavily altered, and many genes are down regulated, including those related to translation process. This study provides an overview of the transcriptional landscape of Marseilleviruses.
Collapse
Affiliation(s)
- Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Microbes, Evolution, Phylogeny and Infection (MEΦI), IRD 198, Assistance Publique-Hopitaux de Marseille (AP-HM), Aix-Marseille Université UM63, Marseille, France
| | - Amina Cherif Louazani
- Microbes, Evolution, Phylogeny and Infection (MEΦI), IRD 198, Assistance Publique-Hopitaux de Marseille (AP-HM), Aix-Marseille Université UM63, Marseille, France
| | - Agnello Picorelli
- Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Graziele Pereira Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Microbes, Evolution, Phylogeny and Infection (MEΦI), IRD 198, Assistance Publique-Hopitaux de Marseille (AP-HM), Aix-Marseille Université UM63, Marseille, France
| | - Francisco Pereira Lobo
- Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEΦI), IRD 198, Assistance Publique-Hopitaux de Marseille (AP-HM), Aix-Marseille Université UM63, Marseille, France
- Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEΦI), IRD 198, Assistance Publique-Hopitaux de Marseille (AP-HM), Aix-Marseille Université UM63, Marseille, France
- Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Abstract
Since the discovery of mimivirus, numerous giant viruses associated with free-living amoebae have been described. The genome of giant viruses can be more than 2.5 megabases, and virus particles can exceed the size of many bacteria. The unexpected characteristics of these viruses have made them intriguing research targets and, as a result, studies focusing on their interactions with their amoeba host have gained increased attention. Studies have shown that giant viruses can establish host-pathogen interactions, which have not been previously demonstrated, including the unprecedented interaction with a new group of small viruses, called virophages, that parasitize their viral factories. In this brief review, we present recent advances in virophage-giant virus-host interactions and highlight selected studies involving interactions between giant viruses and amoebae. These unprecedented interactions involve the giant viruses mimivirus, marseillevirus, tupanviruses and faustovirus, all of which modulate the amoeba environment, affecting both their replication and their spread to new hosts.
Collapse
|
9
|
Aoki K, Hagiwara R, Akashi M, Sasaki K, Murata K, Ogata H, Takemura M. Fifteen Marseilleviruses Newly Isolated From Three Water Samples in Japan Reveal Local Diversity of Marseilleviridae. Front Microbiol 2019; 10:1152. [PMID: 31178850 PMCID: PMC6543897 DOI: 10.3389/fmicb.2019.01152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
The family Marseilleviridae, defined as a group of icosahedral double-stranded DNA viruses with particle size of approximately 250 nm and genome size of 350-380 kbp, belongs to the nucleo-cytoplasmic family of large DNA viruses. The family Marseilleviridae is currently classified into lineages A-E. In this study, we isolated 12 or 15 new members of the family Marseilleviridae from three sampling locations in Japan. Molecular phylogenetic analysis of the MCP genes showed that the new viruses could be further classified into three groups, hokutoviruses, kashiwazakiviruses, and kyotoviruses. Hokutoviruses were closely related to lineage B, kyotoviruses were related to lineage A, and kashiwazakiviruses were also classified into lineage B but a new putative subgroup of lineage B, revealing the diversity of this lineage. Interestingly, more than two viruses with slightly different MCP genes were isolated from a single water sample from a single location, i.e., two hokutoviruses and one kashiwazakivirus were isolated from a small reservoir, five kashiwazakiviruses from the mouth of a river, and five kyotoviruses from fresh water of a river, suggesting that several milliliters of water samples contain several types of giant viruses. Amoeba cells infected with hokutoviruses or kashiwazakiviruses exhibited a "bunch" formation consisting of normal and infected cells similarly to a tupanvirus, whereas cells infected with kyotoviruses or tokyovirus did not. These results suggest the previously unrecognized local diversity of the family Marseilleviridae in aquatic environments.
Collapse
Affiliation(s)
- Keita Aoki
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science, Tokyo, Japan
| | - Reika Hagiwara
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Motohiro Akashi
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Kenta Sasaki
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | | | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Japan
| | - Masaharu Takemura
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science, Tokyo, Japan.,Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
10
|
Rolland C, Andreani J, Louazani AC, Aherfi S, Francis R, Rodrigues R, Silva LS, Sahmi D, Mougari S, Chelkha N, Bekliz M, Silva L, Assis F, Dornas F, Khalil JYB, Pagnier I, Desnues C, Levasseur A, Colson P, Abrahão J, La Scola B. Discovery and Further Studies on Giant Viruses at the IHU Mediterranee Infection That Modified the Perception of the Virosphere. Viruses 2019; 11:E312. [PMID: 30935049 PMCID: PMC6520786 DOI: 10.3390/v11040312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
The history of giant viruses began in 2003 with the identification of Acanthamoeba polyphaga mimivirus. Since then, giant viruses of amoeba enlightened an unknown part of the viral world, and every discovery and characterization of a new giant virus modifies our perception of the virosphere. This notably includes their exceptional virion sizes from 200 nm to 2 µm and their genomic complexity with length, number of genes, and functions such as translational components never seen before. Even more surprising, Mimivirus possesses a unique mobilome composed of virophages, transpovirons, and a defense system against virophages named Mimivirus virophage resistance element (MIMIVIRE). From the discovery and isolation of new giant viruses to their possible roles in humans, this review shows the active contribution of the University Hospital Institute (IHU) Mediterranee Infection to the growing knowledge of the giant viruses' field.
Collapse
Affiliation(s)
- Clara Rolland
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Julien Andreani
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Amina Cherif Louazani
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Sarah Aherfi
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Rania Francis
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Rodrigo Rodrigues
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Ludmila Santos Silva
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Dehia Sahmi
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Said Mougari
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Nisrine Chelkha
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Meriem Bekliz
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Lorena Silva
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Felipe Assis
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Fábio Dornas
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | | | - Isabelle Pagnier
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Christelle Desnues
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Anthony Levasseur
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Philippe Colson
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Jônatas Abrahão
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Bernard La Scola
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| |
Collapse
|
11
|
Chatterjee A, Sicheritz-Pontén T, Yadav R, Kondabagil K. Genomic and metagenomic signatures of giant viruses are ubiquitous in water samples from sewage, inland lake, waste water treatment plant, and municipal water supply in Mumbai, India. Sci Rep 2019; 9:3690. [PMID: 30842490 PMCID: PMC6403294 DOI: 10.1038/s41598-019-40171-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/04/2019] [Indexed: 11/09/2022] Open
Abstract
We report the detection of genomic signatures of giant viruses (GVs) in the metagenomes of three environment samples from Mumbai, India, namely, a pre-filter of a household water purifier, a sludge sample from wastewater treatment plant (WWTP), and a drying bed sample of the same WWTP. The de novo assembled contigs of each sample yielded 700 to 2000 maximum unique matches with the GV genomic database. In all three samples, the maximum number of reads aligned to Pandoraviridae, followed by Phycodnaviridae, Mimiviridae, Iridoviridae, and other Megaviruses. We also isolated GVs from every environmental sample (n = 20) we tested using co-culture of the sample with Acanthomoeba castellanii. From this, four randomly selected GVs were subjected to the genomic characterization that showed remarkable cladistic homology with the three GV families viz., Mimivirirdae (Mimivirus Bombay [MVB]), Megaviruses (Powai lake megavirus [PLMV] and Bandra megavius [BAV]), and Marseilleviridae (Kurlavirus [KV]). All 4 isolates exhibited remarkable genomic identity with respective GV families. Functionally, the genomes were indistinguishable from other previously reported GVs, encoding nearly all COGs across extant family members. Further, the uncanny genomic homogeneity exhibited by individual GV families across distant geographies indicate their yet to be ascertained ecological significance.
Collapse
Affiliation(s)
- Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Thomas Sicheritz-Pontén
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Rajesh Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|