1
|
Elois MA, Pavi CP, Jempierre YFSH, Pilati GVT, Zanchetta L, Grisard HBDS, García N, Rodríguez-Lázaro D, Fongaro G. Trends and Challenges in the Detection and Environmental Surveillance of the Hepatitis E Virus. Microorganisms 2025; 13:998. [PMID: 40431171 PMCID: PMC12114463 DOI: 10.3390/microorganisms13050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
The Hepatitis E virus (HEV) is responsible for causing Hepatitis E, a zoonotic disease that has emerged as a significant global health concern, accounting for about 20 million infections and 70,000 deaths annually. Although it is often recognized as a disease that is acute in low-income countries, HEV has also been recognized as a zoonotic disease in high-income countries. The zoonotic transmission requires flexible approaches to effectively monitor the virus, vectors, and reservoirs. However, the environmental monitoring of HEV presents additional challenges due to limitations in current detection methods, making it difficult to accurately assess the global prevalence of the virus. These challenges hinder efforts to fully understand the scope of the disease and to implement effective control measures. This review will explore these and other critical concerns, addressing gaps in HEV research and highlighting the need for improved strategies in the monitoring, prevention, and management of Hepatitis E using a One Health approach.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Catielen Paula Pavi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Yasmin Ferreira Souza Hoffmann Jempierre
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Lucas Zanchetta
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Henrique Borges da Silva Grisard
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Nerea García
- Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain;
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| |
Collapse
|
2
|
Li J, Zhang Y, Liu J, Xu S, Gao X, Li X, DanBaZhaXi, Zhao Q, Zhou EM, Chen Y, Liu B. Identification and pathogenicity of avian hepatitis E virus from quail. BMC Vet Res 2025; 21:79. [PMID: 39972467 PMCID: PMC11837710 DOI: 10.1186/s12917-025-04531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/29/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Avian hepatitis E virus (HEV) has caused economic losses in the poultry industry and has shown a broad spectrum of infections. In 2022, a quail farm (YangLing, China) exhibited a decrease in egg production, an increase in mortality and hepatosplenomegaly. These characteristics were similar to those of avian HEV infection. To determine whether avian HEV existed on this farm and further clarify the pathogenicity caused by avian HEV under experimental conditions, the livers and spleens were collected from the diseased quails in the field for gross lesion observation and avian HEV detection; then, the pathogenicity was characterized. RESULTS In the field, the results showed enlargement of the liver and spleen and hemorrhage spots on the liver, and the amplified fragment (330-bp length) of HEV shared 100% identity with the Chinese avian HEV strain. The pathogenicity of this virus in quail was characterized by decreased egg production, seroconversion, viremia, fecal virus shedding, liver lesions and HEV antigen in the liver under experimental conditions. These differences indicated that there may be other pathogens or factors causing this disease together on the quail farm in addition to avian HEV, and further detection should be performed. CONCLUSIONS Overall, this is the first study to detect HEV RNA in quails, and an avian HEV strain can successfully infect quails under experimental conditions.
Collapse
Affiliation(s)
- Jinyao Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingyu Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shixuan Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xueyan Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinru Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - DanBaZhaXi
- General Station of Animal Husbandry and Veterinary Technology Promotion, Naqu, Tibet, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Ji L, Zhao R, Pei Y, Sun Y, Sun X, Ji L, Wang X, Liu Y, Shen Q, Yang S, Wang Y, Zhang W. Identification and characterization of multiple novel viruses in fecal samples of cormorants. Front Vet Sci 2025; 11:1528233. [PMID: 39850588 PMCID: PMC11755888 DOI: 10.3389/fvets.2024.1528233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Cormorants, as protected wild animals by the State Forestry Administration of China, have a broad distribution across China. Previous studies have shown that they can be infected with multiple viruses in the Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Polyomaviridae families. There is limited knowledge about the other viruses that cormorants may carry and infect. Methods In this study, we employed viral metagenomics to identify novel viruses in the fecal samples collected from cormorants in Xiamen City, Fujian Province, China. Results Two novel viruses were identified, including one novel picornavirus named Cormhepa01 and one novel avain hepevirus named CormhepaE. The genome of Cormhepa01 is 7,463 bp in length, which encodes a 2,260 aa polyprotien. Similar to other known picornaviruses, the conserved NTPase, proteinase, and polymerase motifs are presented in the 2C, 3C, and 3D proteins separately. Based on the phylogenetic analysis and amino acid sequence alignment, the CormhepaE may be assigned to a new picornavirus genus. The partial genome of CormhepaE is 6,546 bp in length. Compared with other avian hepatitis E virus strains, CormhepaE has multiple variable sites, which are distributed in motifs of the methyltransferase, helicase, and RdRp domains, separately. Based on the phylogenetic analysis, CormhepaE, together with another strain MG737712 isolated from sparrow, formed a new species of the Avihepevirus genus in the Hepeviridae family. Conclusion We identified and characterized two novel cormorant viruses in this study. The findings of this study increase our understanding of the diversity of viruses in cormorants and provide practical viral genome information for the prevention and treatment of potential viral diseases affecting this species.
Collapse
Affiliation(s)
- Li Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, China
| | - Ran Zhao
- Department of Prevention and Control, Xiamen Animal Disease Prevention and Control Center, Xiamen, China
| | - Yifei Pei
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yijie Sun
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoyi Sun
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Chen Y, Tang Y, Zhang S, Tian Y, Xu S, Zhang C, Lin H, Zhao Q, Zhou EM, Liu B. Evaluation of novel synthetic peptides of avian hepatitis E virus ORF2 as vaccine candidate in chickens. Virus Res 2024; 349:199459. [PMID: 39237037 PMCID: PMC11406092 DOI: 10.1016/j.virusres.2024.199459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Avian hepatitis E virus (HEV) has resulted in significant economic losses in the poultry industry. There is currently no commercial vaccination available to prevent avian HEV infection. Previously, a novel epitope (601TFPS604) was discovered in the ORF2 protein of avian HEV. In this study, peptides were synthesized and assessed for their ability to provide immunoprotecting against avian HEV infection in poultry. Twenty-five Hy-Line Variety Brown laying hens were randomly divided into five groups; groups 1 to 3 respectively immunized with RLLDRLSRTFPS, PETRRLLDRLSR (irrelevant peptide control), or truncated avian HEV ORF2 protein (aa 339-606), while group 4 (negative control) was mock-immunized with PBS and group 5 (normal control) was not immunized or challenged. After the challenge, all hens in groups 2 and 4 showed seroconversion, fecal virus shedding, viremia, alanine aminotransferase (ALT) level increasing, liver lesions and HEV antigen in the liver. There were no pathogenic effects in other groups. Collectively, all of these findings showed that hens were completely protected against avian HEV infection when they were immunized with the peptide containing TFPS of the avian HEV ORF2 protein.
Collapse
Affiliation(s)
- Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujia Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiyu Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yinuo Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shenhao Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengwei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huanqing Lin
- Kongtong Animal Disease Prevention and Control Center, Pingliang, Gansu, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Chen Y, Xu S, Tang Y, Zhang C, Nie L, Zhao Q, Zhou EM, Liu B. Pathogenicity of two different genotypes avian hepatitis E strains in laying hens and silkie fowl. Virology 2024; 597:110154. [PMID: 38917693 DOI: 10.1016/j.virol.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/26/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
To determine the pathogenicity of two different genotypes of avian hepatitis E strains in two species of birds, a total of thirty healthy 12-week-old birds were used. After inoculation, fecal virus shedding, viremia, seroconversion, serum alanine aminotransferase (ALT) increases and liver lesions were evaluated. The results revealed that CHN-GS-aHEV and CaHEV could both infect Hy-Line hens and silkie fowls, respectively. Compared to the original avian HEV strain, the cross-infected virus exhibited a delay of 2 weeks and 1 week in emerged seroconversion, viremia, fecal virus shedding, and increased ALT level, and also showed mild liver lesions. These findings suggested that CHN-GS-aHEV may have circulated in chickens. Overall, these two different genotypes of avian HEV showed some variant pathogenicity in different bird species. This study provides valuable data for further analysis of the epidemic conditions of two avian HEVs in Hy-Line hens and silkie fowls.
Collapse
Affiliation(s)
- Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shenhao Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujia Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengwei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Longzhi Nie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Matos M, Bilic I, Tvarogová J, Palmieri N, Furmanek D, Gotowiecka M, Liebhart D, Hess M. A novel genotype of avian hepatitis E virus identified in chickens and common pheasants (Phasianus colchicus), extending its host range. Sci Rep 2022; 12:21743. [PMID: 36526693 PMCID: PMC9758205 DOI: 10.1038/s41598-022-26103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
In 2019, outbreaks of hepatitis-splenomegaly syndrome (HSS) were observed in six commercial layer chicken flocks, belonging to three different Polish farms, and characterized by increased mortality, hemorrhagic hepatitis with attached blood clots on the liver surface, and splenomegaly. Diseased flocks were initially investigated for the presence of avian hepatitis E virus (aHEV) - the etiological agent of HSS - by conventional reverse transcriptase polymerase chain reaction, which revealed aHEV sequences clustering separately from all known aHEV genotypes. Additionally, an aHEV genome was identified for the first time in common pheasants, from a flock in France, using Next Generation Sequencing. This genome clustered together with the Polish aHEVs here investigated. Complete genome aHEV sequences from the HSS outbreaks confirmed the divergent cluster, with a shared nucleotide sequence identity of 79.6-83.2% with other aHEVs, which we propose to comprise a novel aHEV genotype - genotype 7. Histology and immunohistochemistry investigations in the liver and spleen established an association between aHEV and the observed lesions in the affected birds, consolidating the knowledge on the pathogenesis of aHEV, which is still largely unknown. Thus, the present investigation extends the natural host range and genotypes of aHEV and strengthens knowledge on the pathogenesis of HSS.
Collapse
Affiliation(s)
- Miguel Matos
- grid.6583.80000 0000 9686 6466Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Ivana Bilic
- grid.6583.80000 0000 9686 6466Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Jana Tvarogová
- grid.6583.80000 0000 9686 6466Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Nicola Palmieri
- grid.6583.80000 0000 9686 6466Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | | | | | - Dieter Liebhart
- grid.6583.80000 0000 9686 6466Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Michael Hess
- grid.6583.80000 0000 9686 6466Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
7
|
A genetically novel avian Hepatitis E virus in China. Virus Genes 2022; 58:589-593. [PMID: 36183048 DOI: 10.1007/s11262-022-01937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/25/2022] [Indexed: 10/07/2022]
Abstract
Hepatitis E virus (HEV) infection has a global distribution with diverse hosts, including mammals and avians. In this study, an avian Hepatitis E virus (aHEV) strain with a high mortality rate of about 30%, designated as SDXT20, was obtained from the liver of 30-week-old Hubbard chickens with severe hepatosplenomegaly in 2020 in Eastern China and HEV was proved to be the only pathogen by next-generation sequencing. Its complete genome, which encodes three open reading frames (ORFs), is 6649 nt in length. ORF1-3 encodes three proteins with lengths of 1532 aa, 606 aa, and 82 aa, respectively, and ORF2 and ORF3 overlap with each other. BLAST-based similarity analysis of the complete viral genome demonstrated that SDXT20 had merely 80.5-92.2% similarity with avian Avihepevirus magniiecur strains and 50.4%-54.8% lower similarity with Paslahepevirus balayani, Rocahepevirus ratti, and Chirohepevirus eptesici species. Further genetic evolution analysis of the complete genome and ORF2 revealed that the isolate was genetically distinct from known aHEVs, and it belonged to a novel genetically distinct aHEV. This study provides data for further analysis of the multi-host and cross-host genetic evolution of HEVs.
Collapse
|
8
|
Fu F, Deng Q, Li Q, Zhu W, Guo J, Wei P. Emergence and Molecular Characterization of an Avian Hepatitis E Virus From Donglan Black Chicken in Southern China. Front Vet Sci 2022; 9:901292. [PMID: 36110503 PMCID: PMC9469092 DOI: 10.3389/fvets.2022.901292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Avian hepatitis E virus (HEV) is a major pathogen associated with hepatitis splenomegaly syndrome in chickens and has been reported in China. Phylogenetic trees, Bayesian analysis, positive selection sites screening, and recombination analysis were first used to comprehend the global avian HEVs. All the avian HEV strains, including a new isolate named GX20A1 got from Donglan Black chicken in Guangxi, China, were uniformly defined into four genotypes, and GX20A1, belongs to Genotype 3. The topology of the phylogenetic tree based on the sequences of a 339-bp fragment (coding the helicase) in open reading frame (ORF) 1 of the avian HEVs was consistent with that based on the full-genome sequence. The estimated evolution rate of avian HEVs is 2.73 × 10−3 substitution/site/year (95% confidence interval (CI): 8.01 × 10−4−4.91 × 10−3), and the estimated genetic diversity of the strains experienced a declining phase from 2010 to 2017 and stabilized after 2017. It was further found that the Genotype 3 HEVs, including isolates from Hungary and China, likely originated in the 1930s. Notably, GX20A1 was gathered in the same branch with a Genotype 3 Guangdong isolate CaHEV-GDSZ01, which appeared earlier than GX20A1. In addition, two positive selection sites were identified, one for each of ORF1 and ORF2. Overall, the study revealed that avian HEVs were uniformly defined into four genotypes, and a 339-bp fragment in ORF1 of the viral genome could be used for the classification. A Genotype 3 isolate GX20A1 was first found from Donglan Black chicken and most likely originated from Guangdong.
Collapse
|
9
|
Mechanism of Cross-Species Transmission, Adaptive Evolution and Pathogenesis of Hepatitis E Virus. Viruses 2021; 13:v13050909. [PMID: 34069006 PMCID: PMC8157021 DOI: 10.3390/v13050909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is the leading cause of acute hepatitis worldwide. While the transmission in developing countries is dominated by fecal-oral route via drinking contaminated water, the zoonotic transmission is the major route of HEV infection in industrialized countries. The discovery of new HEV strains in a growing number of animal species poses a risk to zoonotic infection. However, the exact mechanism and the determinant factors of zoonotic infection are not completely understood. This review will discuss the current knowledge on the mechanism of cross-species transmission of HEV infection, including viral determinants, such as the open reading frames (ORFs), codon usage and adaptive evolution, as well as host determinants, such as host cellular factors and the host immune status, which possibly play pivotal roles during this event. The pathogenesis of hepatitis E infection will be briefly discussed, including the special forms of this disease, including extrahepatic manifestations, chronic infection, and fulminant hepatitis in pregnant women.
Collapse
|
10
|
Liu B, Chen Y, Zhao L, Zhang M, Ren X, Zhang Y, Zhang B, Fan M, Zhao Q, Zhou EM. Identification and pathogenicity of a novel genotype avian hepatitis E virus from silkie fowl (gallus gallus). Vet Microbiol 2020; 245:108688. [PMID: 32456826 DOI: 10.1016/j.vetmic.2020.108688] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/15/2023]
Abstract
Hepatitis E virus (HEV) is a public health concern because of its zoonotic potential; however, the host species spectrum and the genetic diversity of HEV in many birds are unknown. In the present study, a novel genotype avian HEV was isolated from a bird, silkie fowl, and designated CHN-GS-aHEV (GenBank No. MN562265). The genome of CHN-GS-aHEV was analyzed in comparison with other avian HEVs' and the pathogenicity in silkie fowl was characterized. The results show that the CHN-GS-aHEV shares about 81 % identity with known avian HEV in chickens, ORF3 shares the highest identity (85.1 %-88.0 %) at the nucleotide level, while ORF2 shares the highest identity (96.5 %-98.0 %) at the amino acid level, indicating that the CHN-GS-aHEV belongs to a new genotype avian HEV. The pathogenicity study showed that silkie fowl experimentally infected with the CHN-GS-aHEV demonstrated seroconversion, viremia, fecal virus shedding, liver lesions, and increased ALT level. Furthermore, ultrastructural changes in hepatocyte cells by transmission electron microscopy were characterized by the loss of mitochondrial cristae and swollen mitochondria and endoplasmic reticulum in the infected birds, suggesting that these two organelles may play a significant role in HEV replication. Overall, this study reports the complete genome characterization of a novel avian HEV and successful experimental infection in silkie fowl, and may be serving as a prominent indicator for additional avian HEV detection in other species.
Collapse
Affiliation(s)
- Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Meimei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolei Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Beibei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengnan Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
11
|
Iqbal T, Rashid U, Idrees M, Afroz A, Kamili S, Purdy MA. A novel avian isolate of hepatitis E virus from Pakistan. Virol J 2019; 16:142. [PMID: 31753030 PMCID: PMC6868781 DOI: 10.1186/s12985-019-1247-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
Background Avian hepatitis E virus (aHEV) has been associated with hepatitis-splenomegaly syndrome (HSS) in chickens along with asymptomatic subclinical infection in many cases. So far, four genotypes have been described, which cause infection in chickens, specifically in broiler breeders and layer chickens. In the present study, we isolated and identified two novel aHEV strains from the bile of layer chickens in Pakistan evincing clinical symptoms related to HSS. Methodology Histology of liver and spleen tissues was carried out to observe histopathological changes in these tissues. Bile fluid and fecal suspensions were used for viral RNA isolation through MegNA pure and Trizol method which was further used for viral genome detection and characterization by cDNA synthesis and amplification of partial open reading frame (ORF) 1, ORF2 and complete ORF3. The bioinformatics tools; Molecular Evolutionary Genetics Analysis version 6.0 (MEGA 6), Mfold and ProtScale were used for phylogenic analysis, RNA secondary structure prediction and protein hydropathy analysis, respectively. Results Sequencing and phylogenetic analysis on the basis of partial methyltranferase (MeT), helicase (Hel) domain, ORF2 and complete ORF3 sequence suggests these Pakistani aHEV (Pak aHEV) isolates may belong to a Pakistani specific clade. The overall sequence similarity between the Pak aHEV sequences was 98–100%. The ORF1/ORF3 intergenic region contains a conserved cis-reactive element (CRE) and stem-loop structure (SLS). Analysis of the amino acid sequence of ORF3 indicated two hydrophobic domains (HD) and single conserved proline-rich domain (PRD) PREPSAPP (PXXPXXPP) with a single PSAP motif found in C-terminal. Amino acid changes S15 T, A31T, Q35H and G46D unique to the Pak aHEV sequences were found in the N-terminal region of ORF3. Conclusions Our data suggests that Pak aHEV isolates may represent a novel Pakistani clade and high sequence homology to each other support the supposition they may belong to a monophyletic clade circulating in the region around Pakistan. The data presented in this study provide further information for aHEV genetic diversity, genotype mapping, global distribution and epidemiology.
Collapse
Affiliation(s)
- Tahir Iqbal
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700, Pakistan.,Division of Viral Hepatitis, Centers for Disease Control and Prevention (CDC), MS-A33, 1600 Clifton Rd NE, Atlanta, GA, 30329, USA
| | - Umer Rashid
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Muhammad Idrees
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan.,Hazara University, Mansehra, 21300, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Saleem Kamili
- Division of Viral Hepatitis, Centers for Disease Control and Prevention (CDC), MS-A33, 1600 Clifton Rd NE, Atlanta, GA, 30329, USA
| | - Michael A Purdy
- Division of Viral Hepatitis, Centers for Disease Control and Prevention (CDC), MS-A33, 1600 Clifton Rd NE, Atlanta, GA, 30329, USA
| |
Collapse
|
12
|
Sun P, Lin S, He S, Zhou EM, Zhao Q. Avian Hepatitis E Virus: With the Trend of Genotypes and Host Expansion. Front Microbiol 2019; 10:1696. [PMID: 31396195 PMCID: PMC6668596 DOI: 10.3389/fmicb.2019.01696] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Avian hepatitis E virus (HEV) is a single-stranded, positive-sense RNA virus with a complete genome of approximately 6.6 kb in size. To date, four major genotypes of avian HEV have been identified and classified into the Orthohepevirus B genus of the family Hepeviridae. The avian HEV associated with hepatitis-splenomegaly syndrome, big liver and spleen disease or hepatic rupture hemorrhage syndrome in chickens is genetically and antigenically related to mammalian HEV. With the increased genotypes of avian HEV identified, a broader host tropism is also notable in the epidemiological studies. Due to the lack of an efficient cell culture system, the mechanisms of avian HEV replication and pathogenesis are still poorly understood. The recent identification and characterization of animal strains of avian HEV has demonstrated the virus' ability of cross-species infection. Although it has not yet been detected in humans, the potential threat of a zoonotic HEV capable of transmission to humans needs to be taken into consideration. This review article focuses on the current knowledge regarding avian HEV in virology, epidemiology, pathogenesis, clinical presentation, transmission, diagnosis and prevention. HIGHLIGHTS - The mechanisms of avian HEV replication and pathogenesis are still poorly understood due to the lack of an efficient cell culture system.- A broader host tropism is also notable in the epidemiological studies with the increased genotypes of avian HEV identified.- The recent identification and characterization of animal strains of avian HEV has demonstrated the virus' ability of cross-species infection.- The potential threat of a zoonotic HEV capable of transmission to humans needs to be taken into consideration.
Collapse
Affiliation(s)
- Peng Sun
- School of Agriculture, Ningxia University, Yinchuan, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Shaoli Lin
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Shenghu He
- School of Agriculture, Ningxia University, Yinchuan, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
13
|
Primadharsini PP, Nagashima S, Okamoto H. Genetic Variability and Evolution of Hepatitis E Virus. Viruses 2019; 11:E456. [PMID: 31109076 PMCID: PMC6563261 DOI: 10.3390/v11050456] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus. HEV can cause both acute and chronic hepatitis, with the latter usually occurring in immunocompromised patients. Modes of transmission range from the classic fecal-oral route or zoonotic route, to relatively recently recognized but increasingly common routes, such as via the transfusion of blood products or organ transplantation. Extrahepatic manifestations, such as neurological, kidney and hematological abnormalities, have been documented in some limited cases, typically in patients with immune suppression. HEV has demonstrated extensive genomic diversity and a variety of HEV strains have been identified worldwide from human populations as well as growing numbers of animal species. The genetic variability and constant evolution of HEV contribute to its physiopathogenesis and adaptation to new hosts. This review describes the recent classification of the Hepeviridae family, global genotype distribution, clinical significance of HEV genotype and genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| |
Collapse
|
14
|
The Current Host Range of Hepatitis E Viruses. Viruses 2019; 11:v11050452. [PMID: 31108942 PMCID: PMC6563279 DOI: 10.3390/v11050452] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen transmitting both human to human via the fecal oral route and from animals to humans through feces, direct contact, and consumption of contaminated meat products. Understanding the host range of the virus is critical for determining where potential threats to human health may be emerging from and where potential reservoirs for viral persistence in the environment may be hiding. Initially thought to be a human specific disease endemic to developing countries, the identification of swine as a primary host for genotypes 3 and 4 HEV in industrialized countries has begun a long journey of discovering novel strains of HEV and their animal hosts. As we continue identifying new strains of HEV in disparate animal species, it is becoming abundantly clear that HEV has a broad host range and many of these HEV strains can cross between differing animal species. These cross-species transmitting strains pose many unique challenges to human health as they are often unrecognized as sources of viral transmission.
Collapse
|