1
|
Ryu JY, Choi TS, Kim KT. Fluorescein-switching-based lateral flow assay for the detection of microRNAs. Org Biomol Chem 2024; 22:8182-8188. [PMID: 39291769 DOI: 10.1039/d4ob01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lateral flow assays (LFAs) are a cost-effective and rapid colorimetric technology that can be effectively used for nucleic acid tests (NATs) in various fields such as medical diagnostics and biotechnology. Given their importance, developing more diverse LFAs that operate through novel working mechanisms is essential for designing highly selective and sensitive NATs and providing insights for designing various practical point-of-care testing (POCT) systems. Herein we report a new type of lateral flow assay (LFA) based on fluorescein-switching, enabled by nucleic acid-templated photooxidation of reduced fluorescein by riboflavin tetraacetate (RFTA). The LFA design leverages the fact that a reduced form of fluorescein, which weakly binds to gold nanoparticle (GNP)-conjugated anti-fluorescein antibodies, is oxidized in the presence of target nucleic acids to yield its native state, which then strongly binds to the antibodies. The study involved designing and optimizing probe sequences to detect miR-6090 and miR-141, which are significant markers for prostate cancer. To minimize background signals of LFAs, sodium borohydride (NaBH4) was specifically introduced as a reducing agent, and detailed procedures were established. The developed LFA system accurately identified low fmol levels of target microRNAs with minimal false positives, all detectable with the naked eye, making the system a promising tool for point-of-care diagnostics.
Collapse
Affiliation(s)
- Ji Young Ryu
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Tae Su Choi
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
2
|
Biswas GC, Khan MTM, Das J. Wearable nucleic acid testing platform - A perspective on rapid self-diagnosis and surveillance of infectious diseases. Biosens Bioelectron 2023; 226:115115. [PMID: 36746023 DOI: 10.1016/j.bios.2023.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Wearable biosensors (WB) are currently attracting considerable interest for rapid detection and monitoring of biomarkers including metabolites, protein, and pathogen in bodily fluids (e.g., sweat, saliva, tears, and interstitial fluid). Another branch of WB termed wearable nucleic acid testing (NAT) is blossoming thanks to the development of microfluidic technology and isothermal nucleic acid amplification technique (iNAAT); however, there are only few reports on this. The wearable NAT is an emerging field of point-of-care (POC) diagnostics, and holds the promise for time-saving self-diagnosis, and evidence-based surveillance of infectious diseases in remote or low-resource settings. The use of wearable NAT can also be advanced to include molecular diagnosis, the identification of cancer biomarkers, genetic abnormalities, and other aspects. The wearable NAT provides the potential for evidence-based surveillance of infectious diseases when combined with internet connectivity and App software. To make the wearable NAT accessible to the end users, however, improvements must be made to the fabrication, cost, speed, sensitivity, specificity, sampling, iNAAT, analyzer, and a few other features. So, in this paper, we looked at the wearable NAT's most recent development, identified its difficulties, and defined its potential for managing infectious diseases quickly in the future. This is the wearable NAT review's first effort. We expect that this article will provide the concise resources needed to develop and deploy an efficient wearable NAT system.
Collapse
Affiliation(s)
- Gokul Chandra Biswas
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Md Taufiqur Mannan Khan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Jagotamoy Das
- Department of Chemistry, Northwestern University, 2170 Campus Dr, Evanston, IL, 60208, USA.
| |
Collapse
|
3
|
Velayudhan BT, Naikare HK. Point-of-care testing in companion and food animal disease diagnostics. Front Vet Sci 2022; 9:1056440. [PMID: 36504865 PMCID: PMC9732271 DOI: 10.3389/fvets.2022.1056440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Laboratory diagnoses of animal diseases has advanced tremendously in recent decades with the advent of cutting-edge technologies such as real-time polymerase chain reaction, next generation sequencing (NGS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and others However, most of these technologies need sophisticated equipment, laboratory space and highly skilled workforce. Therefore, there is an increasing market demand for point-of-care testing (POCT) in animal health and disease diagnostics. A wide variety of assays based on antibodies, antigens, nucleic acid, and nanopore sequencing are currently available. Each one of these tests have their own advantages and disadvantages. However, a number of research and developmental activities are underway in both academia and industry to improve the existing tests and develop newer and better tests in terms of sensitivity, specificity, turnaround time and affordability. In both companion and food animal disease diagnostics, POCT has an increasing role to play, especially in resource-limited settings. It plays a critical role in improving animal health and wellbeing in rural communities in low- and middle-income countries. At the same time, ensuring high standard of quality through proper validation, quality assurance and regulation of these assays are very important for accurate diagnosis, surveillance, control and management of animal diseases. This review addresses the different types of POCTs currently available for companion and food animal disease diagnostics, tests in the pipeline and their advantages and disadvantages.
Collapse
Affiliation(s)
- Binu T. Velayudhan
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, United States,*Correspondence: Binu T. Velayudhan
| | - Hemant K. Naikare
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, United States
| |
Collapse
|
4
|
Establishment of loop-mediated isothermal amplification for Brucella detection using a warmer pad as a heating source. Biotechniques 2022; 73:142-150. [PMID: 35997071 DOI: 10.2144/btn-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The study sought to establish a sensitive and specific on-site loop-mediated isothermal amplification (LAMP) for Brucella heated using a warmer pad. LAMP primers specific to the conserved BvrR gene were designed, and the LAMP reaction was optimized. The heating characteristics of the warmer pad were investigated. The detection validity (specificity, sensitivity) of clinical samples by warmer-pad LAMP (WP-LAMP) was compared with that of qPCR. The WP-LAMP method displayed high specificity and sensitivity for five Brucella gene copies. The detection of 104 clinical samples was 97.1% concordant with quantitative polymerase chain reaction. The results showed the success of the WP-LAMP for on-site detection. The method requires no special equipment and is conducive to the prevention and control of brucellosis.
Collapse
|
5
|
Zheng C, Wang K, Zheng W, Cheng Y, Li T, Cao B, Jin Q, Cui D. Rapid developments in lateral flow immunoassay for nucleic acid detection. Analyst 2021; 146:1514-1528. [PMID: 33595550 DOI: 10.1039/d0an02150d] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, lateral flow assay (LFA) for nucleic acid detection has drawn increasing attention in the point-of-care testing fields. Due to its rapidity, easy implementation, and low equipment requirement, it is well suited for use in rapid diagnosis, food authentication, and environmental monitoring under source-limited conditions. This review will discuss two main research directions of lateral flow nucleic acid tests. The first one is the incorporation of isothermal amplification methods with LFA, which ensures an ultra-high testing sensitivity under non-laboratory conditions. The two most commonly used methodologies will be discussed, namely Loop-mediated Isothermal Amplification (LAMP) and Recombinase Polymerase Amplification (RPA), and some novel methods with special properties will also be introduced. The second research direction is the development of novel labeling materials. It endeavors to increase the sensitivity and quantifiability of LFA testing, where signals can be read and analyzed by portable devices. These methods are compared in terms of limits of detection, detection times, and quantifiabilities. It is anticipated that future research on lateral flow nucleic acid tests will focus on the integration of the whole testing process into a microfluidic system and the combination with molecular diagnostic tools such as clustered regularly interspaced short palindromic repeats to facilitate a rapid and accurate test.
Collapse
Affiliation(s)
- Chujun Zheng
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai 200240, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Chung HC, Kim SJ, Nguyen VG, Shin S, Kim JY, Lim SK, Park YH, Park B. New genotype classification and molecular characterization of canine and feline parvoviruses. J Vet Sci 2020; 21:e43. [PMID: 32476317 PMCID: PMC7263909 DOI: 10.4142/jvs.2020.21.e43] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 11/24/2022] Open
Abstract
Background Canine parvovirus (CPV) and feline panleukopenia (FPV) cause severe intestinal disease and leukopenia. Objectives In Korea, there have been a few studies on Korean FPV and CPV-2 strains. We attempted to investigate several genetic properties of FPV and CPV-2. Methods Several FPV and CPV sequences from around world were analyzed by Bayesian phylo-geographical analysis. Results The parvoviruses strains were newly classified into FPV, CPV 2-I, CPV 2-II, and CPV 2-III genotypes. In the strains isolated in this study, Gigucheon, Rara and Jun belong to the FPV, while Rachi strain belong to CPV 2-III. With respect to CPV type 2, the new genotypes are inconsistent with the previous genotype classifications (CPV-2a, -2b, and -2c). The root of CPV-I strains were inferred to be originated from a USA strain, while the CPV-II and III were derived from Italy strains that originated in the USA. Based on VP2 protein analysis, CPV 2-I included CPV-2a-like isolates only, as differentiated by the change in residue S297A/N. Almost CPV-2a isolates were classified into CPV 2-III, and a large portion of CPV-2c isolates was classified into CPV 2-II. Two residue substitutions F267Y and Y324I of the VP2 protein were characterized in the isolates of CPV 2-III only. Conclusions We provided an updated insight on FPV and CPV-2 genotypes by molecular-based and our findings demonstrate the genetic characterization according to the new genotypes.
Collapse
Affiliation(s)
- Hee Chun Chung
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Sung Jae Kim
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Van Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| | - Sook Shin
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | | | - Suk Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Yong Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea.
| | - BongKyun Park
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
7
|
Key significance of DNA-target size in lateral flow assay coupled with recombinase polymerase amplification. Anal Chim Acta 2020; 1102:109-118. [DOI: 10.1016/j.aca.2019.12.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
|