1
|
Xu J, Song S, Nie C, Chen H, Hao K, Yu F, Zhao Z. Characterization of the Ictalurid herpesvirus 1 immediate-early gene ORF24 and its potential role in transcriptional regulation in yeast. Arch Virol 2024; 169:127. [PMID: 38789713 DOI: 10.1007/s00705-024-06045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/23/2024] [Indexed: 05/26/2024]
Abstract
Herpesviruses adhere to a precise temporal expression model in which immediate-early (IE) genes play a crucial role in regulating the viral life cycle. However, there is a lack of functional research on the IE genes in Ictalurid herpesvirus 1 (IcHV-1). In this study, we identified the IcHV-1 ORF24 as an IE gene via a metabolic inhibition assay, and subcellular analysis indicated its predominant localisation in the nucleus. To investigate its function, we performed yeast reporter assays using an ORF24 fusion protein containing the Gal4-BD domain and found that BD-ORF24 was able to activate HIS3/lacZ reporter genes without the Gal4-AD domain. Our findings provide concrete evidence that ORF24 is indeed an IE gene that likely functions as a transcriptional regulator during IcHV-1 infection. This work contributes to our understanding of the molecular mechanisms underlying fish herpesvirus IE gene expression.
Collapse
Affiliation(s)
- Jiehua Xu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Siyang Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Chunlan Nie
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Hongxun Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Kai Hao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Fei Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China.
- College of Oceanography, Hohai University, Nanjing, 210098, P.R. China.
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China.
- College of Oceanography, Hohai University, Nanjing, 210098, P.R. China.
| |
Collapse
|
2
|
Fei Y, Hu G, Xu J, Song S, Zhao Z, Lu L. Involvement of transcriptional co-activator p300 in upregulated expression of HSP70 by aquareovirus non-structural protein NS31. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105077. [PMID: 37820759 DOI: 10.1016/j.dci.2023.105077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Members of Aquareovirus genus, including grass carp reovirus (GCRV), contribute to a serious threat to aquaculture animals accompanied by stress response. Our previous reports revealed that GCRV nonstructural protein NS31 serves as a potent contributor for virus selectively up-regulating specific heat shock protein 70-kd gene(HSP70),however,the mechanism by which inducing HSP70 gene expression is unknown. In this study, we further found that either the N- or C-terminal domain of GCRV NS31 is responsible for enhancing fish HSP70 promoter transcription, and recombinant NS31 protein purified from baculovirus expression system seems to not directly bind HSP70 basic promoter in vitro by an electrophoretic mobility shift assay. However, the transcriptional co-activator p300 was identified as a potential interacting partner for NS31 by pull-down assay. Moreover, knock-down of p300 or addition of p300 inhibitor resulted in obviously reduced HSP70 expression by NS31 or GCRV infection suggesting that the well-characterized heat-shock-responsive HSF1/p300 transcriptional complex might involve in the induction of HSP70. These results collectively reveal this aquareovirus generates cell stress response through its nonstructural protein NS31 recruiting transcriptional co-activator p300.
Collapse
Affiliation(s)
- Yu Fei
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, PR China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Guangyao Hu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, PR China
| | - Jiehua Xu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, PR China
| | - Siyang Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, PR China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|
3
|
Kong W, Ding G, Yang P, Li Y, Cheng G, Cai C, Xiao J, Feng H, Xu Z. Comparative Transcriptomic Analysis Revealed Potential Differential Mechanisms of Grass Carp Reovirus Pathogenicity. Int J Mol Sci 2023; 24:15501. [PMID: 37958486 PMCID: PMC10649309 DOI: 10.3390/ijms242115501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Grass carp reovirus (GCRV), one of the most serious pathogens threatening grass carp (Ctenopharyngodon idella), can lead to grass carp hemorrhagic disease (GCHD). Currently, GCRV can be divided into three genotypes, but the comparison of their pathogenic mechanisms and the host responses remain unclear. In this study, we utilized the Ctenopharyngodon idella kidney (CIK) model infected with GCRV to conduct comparative studies on the three genotypes. We observed a cytopathic effect (CPE) in the GCRV-I and GCRV-III groups, whereas the GCRV-II group did not show any CPE. Moreover, a consistent trend in the mRNA expression levels of antiviral-related genes across all experimental groups of CIK cells was detected via qPCR and further explored through RNA-seq analysis. Importantly, GO/KEGG enrichment analysis showed that GCRV-I, -II, and -III could all activate the immune response in CIK cells, but GCRV-II induced more intense immune responses. Intriguingly, transcriptomic analysis revealed a widespread down-regulation of metabolism processes such as steroid biosynthesis, butanoate metabolism, and N-Glycan biosynthesis in infected CIK cells. Overall, our results reveal the CIK cells showed unique responses in immunity and metabolism in the three genotypes of GCRV infection. These results provide a theoretical basis for understanding the pathogenesis and prevention and control methods of GCRV.
Collapse
Affiliation(s)
- Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Guangyi Ding
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Peng Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Yuqing Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Gaofeng Cheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Chang Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China; (J.X.); (H.F.)
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China; (J.X.); (H.F.)
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| |
Collapse
|
4
|
Li X, Guo R, Zou X, Yao Y, Lu L. The First Cbk-Like Phage Infecting Erythrobacter, Representing a Novel Siphoviral Genus. Front Microbiol 2022; 13:861793. [PMID: 35620087 PMCID: PMC9127768 DOI: 10.3389/fmicb.2022.861793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Erythrobacter is an important and widespread bacterial genus in the ocean. However, our knowledge about their phages is still rare. Here, a novel lytic phage vB_EliS-L02, infecting Erythrobacter litoralis DSM 8509, was isolated and purified from Sanggou Bay seawater, China. Morphological observation revealed that the phage belonged to Cbk-like siphovirus, with a long prolate head and a long tail. The host range test showed that phage vB_EliS-L02 could only infect a few strains of Erythrobacter, demonstrating its potential narrow-host range. The genome size of vB_EliS-L02 was 150,063 bp with a G+C content of 59.43%, encoding 231 putative open reading frames (ORFs), but only 47 were predicted to be functional domains. Fourteen auxiliary metabolic genes were identified, including phoH that may confer vB_EliS-L02 the advantage of regulating phosphate uptake and metabolism under a phosphate-limiting condition. Genomic and phylogenetic analyses indicated that vB_EliS-L02 was most closely related to the genus Lacusarxvirus with low similarity (shared genes < 30%, and average nucleotide sequence identity < 70%), distantly from other reported phages, and could be grouped into a novel viral genus cluster, in this study as Eliscbkvirus. Meanwhile, the genus Eliscbkvirus and Lacusarxvirus stand out from other siphoviral genera and could represent a novel subfamily within Siphoviridae, named Dolichocephalovirinae-II. Being a representative of an understudied viral group with manifold adaptations to the host, phage vB_EliS-L02 could improve our understanding of the virus–host interactions and provide reference information for viral metagenomic analysis in the ocean.
Collapse
Affiliation(s)
- Xuejing Li
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, China
| | - Ruizhe Guo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Yanyan Yao
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, China
| | - Longfei Lu
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, China
| |
Collapse
|
5
|
Yu F, Wang L, Li W, Wang H, Que S, Lu L. Aquareovirus NS31 protein serves as a specific inducer for host heat shock 70-kDa protein. J Gen Virol 2020; 101:145-155. [PMID: 31859614 DOI: 10.1099/jgv.0.001363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Elevation of heat-shock protein expression, known as cellular heat-shock responses, occurs during infection of many viruses, which is involved in viral replication through various mechanisms. Herein, transcriptome analysis revealed that over-expression of non-structural protein NS31 of grass carp reovirus (GCRV) in grass carp Ctenopharyngodon idellus kidney (CIK) cells specifically induced expression of heat-shock response (HSR) genes HSP30 and HSP70. We further found that, among the HSR genes, only HSP70 protein were shown to be efficiently induced in fish cells following NS31 over-expression or GCRV infection. Employing a luciferase assay, we were able to show that the promoter of the HSP70 gene can be specifically activated by NS31. In addition, over-expressing HSP70 in grass carp CIK cells resulted in enhanced replication efficiency of GCRV, and an inhibitor for HSP70 resulted in the inhibition of GCRV replication, indicating that HSP70 should serve as a pro-viral factor. We also found that NS31 could activate HSP70 expression in cells of other vertebrate animals. Similar inducing effect on HSP70 expression was demonstrated for NS31-homologue proteins of other aquareoviruses including American grass carp reovirus (AGCRV) and GRCV (green river chinook virus). All these results indicated NS31 proteins in the Aquareovirus genus should play a key role for up-regulating specific HSP70 gene during viral replication.
Collapse
Affiliation(s)
- Fei Yu
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, PR China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Longlong Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Wanjuan Li
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Hao Wang
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Shunzheng Que
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| |
Collapse
|
6
|
Wang L, Yu F, Xu N, Lu L. Grass carp reovirus capsid protein interacts with cellular proteasome subunit beta-type 7: Evidence for the involvement of host proteasome during aquareovirus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:77-86. [PMID: 31846778 DOI: 10.1016/j.fsi.2019.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The eukaryotic proteasome is a large multi-subunit complex that plays an important role in a wide range of fundamental cellular functions by degrading un-needed or damaged proteins, which also can be inverted or manipulated by viruses to favor viral infection. In this study, we demonstrated that proteasome subunit beta-type 7 (PSMB7), a proteasome-constitutive protein that is important for proteasome assembly, interacts with grass carp reovirus (GCRV) capsid proteins. Yeast 2-hybrid assay indicates that capsid protein VP38 of genotype Ⅲ GCRV could bind PSMB7, and this mutual interaction was further confirmed by pull-down, co-immunoprecipitation and subcellular co-localization assays. Furthermore, VP38 homologous proteins, VP7 from genotype I and VP35 from genotype II GCRV, can also interact with host PSMB7 in similar protein-protein interaction assays. Finally, PSMB7 expression level remains stable during GCRV infection, while, psmb7 gene transcription was repressed upon GCRV challenge; interaction with PSMB7 doesn't result in protein degradation of either VP7 or VP38 during viral infection. Thus, the interaction between host PSMB7 and viral capsid protein might suggest that interfering with PSMB7-mediated proteasome assembly should be involved in efficient aquareovirus infection.
Collapse
Affiliation(s)
- Longlong Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Fei Yu
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Ning Xu
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|