1
|
Ortega-Acosta C, Ochoa-Martínez DL, Rodríguez-Leyva E. High-Throughput Sequencing Reveals New Viroid Species in Opuntia in Mexico. Viruses 2024; 16:1177. [PMID: 39205151 PMCID: PMC11359548 DOI: 10.3390/v16081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
In the main cactus pear (Opuntia ficus-indica)-producing region in the State of Mexico, fruit production occupies the largest cultivated area with 15,800 ha, while 900 ha are cultivated for edible young Opuntia pads ("nopalitos") which are consumed as vegetables. Two composite samples consisting of cladodes of plants for fruit production (n = 6) and another of "nopalitos" (n = 6) showing virus-like symptoms were collected. Both sample sets were subjected to high-throughput sequencing (HTS) to identify the viruses and viroids. The HTS results were verified using RT-PCR and Sanger sequencing. Subsequently, 86 samples including cladodes from "nopalitos", plants for fruit production, xoconostles, and some wild Opuntia were analyzed via RT-PCR with specific primers for the viruses and viroids previously detected via HTS. Three viruses were discovered [Opuntia virus 2 (OV2), cactus carlavirus 1 (CCV-1), and Opuntia potexvirus A (OPV-A)], along with a previously reported viroid [Opuntia viroid 1 (OVd-1)]. Additionally, two new viroids were identified, provisionally named the Mexican opuntia viroid (MOVd, genus Pospiviroid) and Opuntia viroid 2 (OVd-2, genus Apscaviroid). A phylogenetic analysis, pairwise identity comparison, and conserved structural elements analysis confirmed the classification of these two viroids as new species within the Pospiviroidae family. This is the first report of a pospiviroid and two apscaviroids infecting cactus pears in the world. Overall, this study enhances our understanding of the virome associated with cactus pears in Mexico.
Collapse
Affiliation(s)
- Candelario Ortega-Acosta
- Posgrado en Fitosanidad-Fitopatología, Colegio de Postgraduados, Texcoco C.P. 56264, Estado de México, Mexico;
| | - Daniel L. Ochoa-Martínez
- Posgrado en Fitosanidad-Fitopatología, Colegio de Postgraduados, Texcoco C.P. 56264, Estado de México, Mexico;
| | - Esteban Rodríguez-Leyva
- Posgrado en Fitosanidad-Entomología y Acarología, Colegio de Postgraduados, Texcoco C.P. 56264, Estado de México, Mexico;
| |
Collapse
|
2
|
Xuan Z, Li S, Zhang S, Ran W, Zhou Y, Yang F, Zhou C, Cao M. Complete genome sequence of citrus yellow spot virus, a newly discovered member of the family Betaflexiviridae. Arch Virol 2020; 165:2709-2713. [PMID: 32880020 DOI: 10.1007/s00705-020-04794-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
A novel plant virus with a positive single-stranded (+ss) RNA genome was detected in Taibei pomelo (Citrus grandis (L.) Osbeck cv. Taibeiyou) in China by high-throughput sequencing (HTS). Tentatively named "citrus yellow spot virus" (CiYSV), it has 8,061 nucleotides (nt) excluding the poly(A) tail and contains three open reading frames (ORFs). ORF1 is predicted to encode a replicase polyprotein (RP) with conserved domains typical of members of the family Betaflexiviridae. ORF2 encodes a protein sharing the highest sequence identity with the putative movement protein (MP) found in the negative-stranded RNA virus Trifolium pratense virus B (TpVB, MH982249, genus Cytorhabdovirus). ORF3 overlaps ORF2 by 137 nt and encodes a predicted coat protein (CP) that is distantly related to those of betaflexiviruses. Phylogenetic analysis based on the MP amino acid sequence showed that the CiYSV clustered with cytorhabdoviruses rather than betaflexiviruses, whilst trees based on the whole genome, RP, and CP showed it to belong to the family Betaflexiviridae but to be distinct from any other known betaflexiviruses. These results suggest that the CiYSV should be considered the first member of a tentative new genus in the family Betaflexiviridae.
Collapse
Affiliation(s)
- Zhiyou Xuan
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shuai Li
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Song Zhang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Wenyi Ran
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Fangyun Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China. .,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Fontenele RS, Salywon AM, Majure LC, Cobb IN, Bhaskara A, Avalos-Calleros JA, Argüello-Astorga GR, Schmidlin K, Khalifeh A, Smith K, Schreck J, Lund MC, Köhler M, Wojciechowski MF, Hodgson WC, Puente-Martinez R, Van Doorslaer K, Kumari S, Vernière C, Filloux D, Roumagnac P, Lefeuvre P, Ribeiro SG, Kraberger S, Martin DP, Varsani A. A Novel Divergent Geminivirus Identified in Asymptomatic New World Cactaceae Plants. Viruses 2020; 12:E398. [PMID: 32260283 PMCID: PMC7232249 DOI: 10.3390/v12040398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cactaceae comprise a diverse and iconic group of flowering plants which are almost exclusively indigenous to the New World. The wide variety of growth forms found amongst the cacti have led to the trafficking of many species throughout the world as ornamentals. Despite the evolution and physiological properties of these plants having been extensively studied, little research has focused on cactus-associated viral communities. While only single-stranded RNA viruses had ever been reported in cacti, here we report the discovery of cactus-infecting single-stranded DNA viruses. These viruses all apparently belong to a single divergent species of the family Geminiviridae and have been tentatively named Opuntia virus 1 (OpV1). A total of 79 apparently complete OpV1 genomes were recovered from 31 different cactus plants (belonging to 20 different cactus species from both the Cactoideae and Opuntioideae clades) and from nine cactus-feeding cochineal insects (Dactylopius sp.) sampled in the USA and Mexico. These 79 OpV1 genomes all share > 78.4% nucleotide identity with one another and < 64.9% identity with previously characterized geminiviruses. Collectively, the OpV1 genomes display evidence of frequent recombination, with some genomes displaying up to five recombinant regions. In one case, recombinant regions span ~40% of the genome. We demonstrate that an infectious clone of an OpV1 genome can replicate in Nicotiana benthamiana and Opuntia microdasys. In addition to expanding the inventory of viruses that are known to infect cacti, the OpV1 group is so distantly related to other known geminiviruses that it likely represents a new geminivirus genus. It remains to be determined whether, like its cactus hosts, its geographical distribution spans the globe.
Collapse
Affiliation(s)
- Rafaela S. Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Andrew M. Salywon
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Lucas C. Majure
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Ilaria N. Cobb
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amulya Bhaskara
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- Center for Research in Engineering, Science and Technology, Paradise Valley High School, 3950 E Bell Rd, Phoenix, AZ 85032, USA
| | - Jesús A. Avalos-Calleros
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., Mexico; (J.A.A.-C.); (G.R.A.-A.)
| | - Gerardo R. Argüello-Astorga
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa de San José 2055, Lomas 4ta Secc, San Luis Potosi 78216, S.L.P., Mexico; (J.A.A.-C.); (G.R.A.-A.)
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Anthony Khalifeh
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Kendal Smith
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Joshua Schreck
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Matias Köhler
- Departamento de BotânicaPrograma de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501970, Brazil;
| | | | - Wendy C. Hodgson
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Raul Puente-Martinez
- Desert Botanical Garden, Phoenix, AZ 85008, USA; (A.M.S.); (L.C.M.); (W.C.H.); (R.P.-M.)
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, and UA Cancer Center, University of Arizona, Tucson, AZ 85721, USA;
| | - Safaa Kumari
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol Station, Beqa’a, Zahle, Lebanon;
| | - Christian Vernière
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | - Denis Filloux
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, BGPI, 34398 Montpellier, France; (C.V.); (D.F.); (P.R.)
- BGPI, INRAE, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France
| | | | - Simone G. Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, CEP 70770-917, Brazil;
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
| | - Darren P. Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa;
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; (R.S.F.); (I.N.C.); (A.B.); (K.S.); (A.K.); (K.S.); (J.S.); (M.C.L.); (S.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|