1
|
Obong’o BO, Ogutu FO, Hurley SK, Okiko GM, Mahony J. Exploring the Microbial Ecology of Water in Sub-Saharan Africa and the Potential of Bacteriophages in Water Quality Monitoring and Treatment to Improve Its Safety. Viruses 2024; 16:1897. [PMID: 39772204 PMCID: PMC11680409 DOI: 10.3390/v16121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region. Bacteriophages specifically infect bacteria and offer a targeted approach to reducing bacterial load, including multidrug-resistant strains, without the drawbacks of chemical disinfectants. This review also highlights the advantages of phage bioremediation, including its specificity, adaptability, and minimal environmental impact. It also discusses various case studies demonstrating its efficacy in different water systems. Additionally, we underscore the need for further research and the development of region-specific phage applications to improve water quality and public health outcomes in sub-Saharan Africa. By integrating bacteriophage strategies into water treatment and food production, the region can address critical microbial threats, mitigate the spread of antimicrobial resistance, and advance global efforts toward ensuring safe water for all.
Collapse
Affiliation(s)
- Boniface Oure Obong’o
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Fredrick Onyango Ogutu
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Shauna Kathleen Hurley
- APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Gertrude Maisiba Okiko
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Jennifer Mahony
- APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland;
| |
Collapse
|
2
|
Pchelin IM, Smolensky AV, Azarov DV, Goncharov AE. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses 2024; 16:1879. [PMID: 39772189 PMCID: PMC11680127 DOI: 10.3390/v16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Andrei V. Smolensky
- Department of Computer Science, Neapolis University Pafos, Paphos 8042, Cyprus;
| | - Daniil V. Azarov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| |
Collapse
|
3
|
Papudeshi B, Roach MJ, Mallawaarachchi V, Bouras G, Grigson SR, Giles SK, Harker CM, Hutton ALK, Tarasenko A, Inglis LK, Vega AA, Souza C, Boling L, Hajama H, Cobián Güemes AG, Segall AM, Dinsdale EA, Edwards RA. phage therapy candidates from Sphae: An automated toolkit for predicting sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624194. [PMID: 39605506 PMCID: PMC11601643 DOI: 10.1101/2024.11.18.624194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Motivation Phage therapy is a viable alternative for treating bacterial infections amidst the escalating threat of antimicrobial resistance. However, the therapeutic success of phage therapy depends on selecting safe and effective phage candidates. While experimental methods focus on isolating phages and determining their lifecycle and host range, comprehensive genomic screening is critical to identify markers that indicate potential risks, such as toxins, antimicrobial resistance, or temperate lifecycle traits. These analyses are often labor-intensive and time-consuming, limiting the rapid deployment of phage in clinical settings. Results We developed Sphae, an automated bioinformatics pipeline designed to streamline therapeutic potential of a phage in under ten minutes. Using Snakemake workflow manager, Sphae integrates tools for quality control, assembly, genome assessment, and annotation tailored specifically for phage biology. Sphae automates the detection of key genomic markers, including virulence factors, antimicrobial resistance genes, and lysogeny indicators like integrase, recombinase, and transposase, which could preclude therapeutic use. Benchmarked on 65 phage sequences, 28 phage samples showed therapeutic potential, 8 failed during assembly due to low sequencing depth, 22 samples included prophage or virulent markers, and the remaining 23 samples included multiple phage genomes per sample. This workflow outputs a comprehensive report, enabling rapid assessment of phage safety and suitability for phage therapy under these criteria. Sphae is scalable, portable, facilitating efficient deployment across most high-performance computing (HPC) and cloud platforms, expediting the genomic evaluation process. Availability Sphae is source code and freely available at https://github.com/linsalrob/sphae, with installation supported on Conda, PyPi, Docker containers.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Michael J. Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Susanna R. Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Clarice M. Harker
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Abbey L. K. Hutton
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Anita Tarasenko
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Laura K. Inglis
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Alejandro A. Vega
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Souza
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Lance Boling
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Hamza Hajama
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Ana Georgina Cobián Güemes
- Department of Pathology, University of San Diego, 500 Gilman Drive, MC 0612, La Jolla, San Diego, CA, 92093-0612, USA
| | - Anca M. Segall
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
4
|
Bradley JS, Hajama H, Akong K, Jordan M, Stout D, Rowe RS, Conrad DJ, Hingtgen S, Segall AM. Bacteriophage Therapy of Multidrug-resistant Achromobacter in an 11-Year-old Boy With Cystic Fibrosis Assessed by Metagenome Analysis. Pediatr Infect Dis J 2023; 42:754-759. [PMID: 37343220 DOI: 10.1097/inf.0000000000004000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a genetic disease associated with lung disease characterized by chronic pulmonary infection, increasingly caused by multiple drug-resistant pathogens after repeated antibiotic exposure, limiting antibiotic treatment options. Bacteriophages can provide a pathogen-specific bactericidal treatment used with antibiotics to improve microbiologic and clinical outcomes in CF. METHODS Achromobacter species isolates from sputum of a chronically infected person with CF, were assessed for susceptibility to bacteriophages: 2 highly active, purified bacteriophages were administered intravenously every 8 hours, in conjunction with a 14-day piperacillin/tazobactam course for CF exacerbation. Sputum and blood were collected for metagenome analysis during treatment, with sputum analysis at 1-month follow-up. Assessments of clinical status, pulmonary status and laboratory evaluation for safety were conducted. RESULTS Bacteriophage administration was well-tolerated, with no associated clinical or laboratory adverse events. Metagenome analysis documented an 86% decrease in the relative proportion of Achromobacter DNA sequence reads in sputum and a 92% decrease in blood, compared with other bacterial DNA reads, comparing pretreatment and posttreatment samples. Bacteriophage DNA reads were detected in sputum after intravenous administration during treatment, and at 1-month follow-up. Reversal of antibiotic resistance to multiple antibiotics occurred in some isolates during treatment. Stabilization of lung function was documented at 1-month follow-up. CONCLUSIONS Bacteriophage/antibiotic treatment decreased the host pulmonary bacterial burden for Achromobacter assessed by metagenome analysis of sputum and blood, with ongoing bacteriophage replication documented in sputum at 1-month follow-up. Prospective controlled studies are needed to define the dose, route of administration and duration of bacteriophage therapy for both acute and chronic infection in CF.
Collapse
Affiliation(s)
- John S Bradley
- From the Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, and Rady Children's Hospital
| | - Hamza Hajama
- Department of Biology and Viral Information Institute, San Diego State University
| | - Kathryn Akong
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, and Rady Children's Hospital
| | - Mary Jordan
- Rady Children's Hospital San Diego Clinical Research
| | - Dayna Stout
- Rady Children's Hospital San Diego Clinical Research
| | - Ryan S Rowe
- Department of Biology and Viral Information Institute, San Diego State University
| | - Douglas J Conrad
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Sara Hingtgen
- Rady Children's Hospital San Diego Clinical Research
| | - Anca M Segall
- Department of Biology and Viral Information Institute, San Diego State University
| |
Collapse
|
5
|
Cobián Güemes AG, Le T, Rojas MI, Jacobson NE, Villela H, McNair K, Hung SH, Han L, Boling L, Octavio JC, Dominguez L, Cantú VA, Archdeacon S, Vega AA, An MA, Hajama H, Burkeen G, Edwards RA, Conrad DJ, Rohwer F, Segall AM. Compounding Achromobacter Phages for Therapeutic Applications. Viruses 2023; 15:1665. [PMID: 37632008 PMCID: PMC10457797 DOI: 10.3390/v15081665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Achromobacter species colonization of Cystic Fibrosis respiratory airways is an increasing concern. Two adult patients with Cystic Fibrosis colonized by Achromobacter xylosoxidans CF418 or Achromobacter ruhlandii CF116 experienced fatal exacerbations. Achromobacter spp. are naturally resistant to several antibiotics. Therefore, phages could be valuable as therapeutics for the control of Achromobacter. In this study, thirteen lytic phages were isolated and characterized at the morphological and genomic levels for potential future use in phage therapy. They are presented here as the Achromobacter Kumeyaay phage collection. Six distinct Achromobacter phage genome clusters were identified based on a comprehensive phylogenetic analysis of the Kumeyaay collection as well as the publicly available Achromobacter phages. The infectivity of all phages in the Kumeyaay collection was tested in 23 Achromobacter clinical isolates; 78% of these isolates were lysed by at least one phage. A cryptic prophage was induced in Achromobacter xylosoxidans CF418 when infected with some of the lytic phages. This prophage genome was characterized and is presented as Achromobacter phage CF418-P1. Prophage induction during lytic phage preparation for therapy interventions require further exploration. Large-scale production of phages and removal of endotoxins using an octanol-based procedure resulted in a phage concentrate of 1 × 109 plaque-forming units per milliliter with an endotoxin concentration of 65 endotoxin units per milliliter, which is below the Food and Drugs Administration recommended maximum threshold for human administration. This study provides a comprehensive framework for the isolation, bioinformatic characterization, and safe production of phages to kill Achromobacter spp. in order to potentially manage Cystic Fibrosis (CF) pulmonary infections.
Collapse
Affiliation(s)
- Ana Georgina Cobián Güemes
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Tram Le
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Maria Isabel Rojas
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Nicole E. Jacobson
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Helena Villela
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Marine Microbiomes Lab, Red Sea Research Center, King Abdullah University of Science and Technology, Building 2, Level 3, Room 3216 WS03, Thuwal 23955-6900, Saudi Arabia
| | - Katelyn McNair
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Shr-Hau Hung
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Lili Han
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lance Boling
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Jessica Claire Octavio
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Lorena Dominguez
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Vito Adrian Cantú
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Sinéad Archdeacon
- College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Alejandro A. Vega
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90025, USA
| | - Michelle A. An
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Hamza Hajama
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Gregory Burkeen
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Robert A. Edwards
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
- Flinders Accelerator for Microbiome Exploration, Flinders University, Sturt Road, Bedford Park 5042, Australia
| | - Douglas J. Conrad
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA 9500, USA
| | - Forest Rohwer
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Anca M. Segall
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
6
|
Nagel TE, Mutai IJ, Josephs T, Clokie MR. A Brief History of Phage Research and Teaching in Africa. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:184-193. [PMID: 36793885 PMCID: PMC9917308 DOI: 10.1089/phage.2022.29037.inp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
| | | | - Theodore Josephs
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha R.J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
7
|
Makumi A, Mhone AL, Odaba J, Guantai L, Svitek N. Phages for Africa: The Potential Benefit and Challenges of Phage Therapy for the Livestock Sector in Sub-Saharan Africa. Antibiotics (Basel) 2021; 10:antibiotics10091085. [PMID: 34572667 PMCID: PMC8470919 DOI: 10.3390/antibiotics10091085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
One of the world’s fastest-growing human populations is in Sub-Saharan Africa (SSA), accounting for more than 950 million people, which is approximately 13% of the global population. Livestock farming is vital to SSA as a source of food supply, employment, and income. With this population increase, meeting this demand and the choice for a greater income and dietary options come at a cost and lead to the spread of zoonotic diseases to humans. To control these diseases, farmers have opted to rely heavily on antibiotics more often to prevent disease than for treatment. The constant use of antibiotics causes a selective pressure to build resistant bacteria resulting in the emergence and spread of multi-drug resistant (MDR) organisms in the environment. This necessitates the use of alternatives such as bacteriophages in curbing zoonotic pathogens. This review covers the underlying problems of antibiotic use and resistance associated with livestock farming in SSA, bacteriophages as a suitable alternative, what attributes contribute to making bacteriophages potentially valuable for SSA and recent research on bacteriophages in Africa. Furthermore, other topics discussed include the creation of phage biobanks and the challenges facing this kind of advancement, and the regulatory aspects of phage development in SSA with a focus on Kenya.
Collapse
|
8
|
Abstract
With the fast emergence of serious antibiotic resistance and the lagged discovery of novel antibacterial drugs, phage therapy for pathogenic bacterial infections has acquired great attention in the clinics. However, development of therapeutic phages also faces tough challenges, such as laborious screening and time to generate effective phage drugs since each phage may only lyse a narrow scope of bacterial strains. Identifying highly effective phages with broad host ranges is crucial for improving phage therapy. Here, we isolated and characterized several lytic phages from various environments specific for Pseudomonas aeruginosa by testing their growth, invasion, host ranges, and potential for killing targeted bacteria. Importantly, we identified several therapeutic phages (HX1, PPY9, and TH15) with broad host ranges to lyse laboratory strains and clinical isolates of P. aeruginosa with multi-drug resistance (MDR) both in vitro and in mouse models. In addition, we analyzed critical genetic traits related to the high-level broad host coverages by genome sequencing and subsequent computational analysis against known phages. Collectively, our findings establish that these novel phages may have potential for further development as therapeutic options for patients who fail to respond to conventional treatments.IMPORTANCE Novel lytic phages isolated from various environmental settings were systematically characterized for their critical genetic traits, morphology structures, host ranges against laboratory strains and clinical multi-drug resistant (MDR) Pseudomonas aeruginosa, and antibacterial capacity both in vitro and in mouse models. First, we characterized the genetic traits and compared with other existing phages. Furthermore, we utilized acute pneumonia induced by laboratorial strain PAO1, and W19, an MDR clinical isolate and chronic pneumonia by agar beads laden with FDR1, a mucoid phenotype strain isolated from the sputum of a cystic fibrosis (CF) patient. Consequently, we found that these phages not only suppress bacteria in vitro but also significantly reduce the infection symptom and disease progression in vivo, including lowered bug burdens, inflammatory responses and lung injury in mice, suggesting that they may be further developed as therapeutic agents against MDR P. aeruginosa.
Collapse
|
9
|
Analysis of a Novel Bacteriophage vB_AchrS_AchV4 Highlights the Diversity of Achromobacter Viruses. Viruses 2021; 13:v13030374. [PMID: 33673419 PMCID: PMC7996906 DOI: 10.3390/v13030374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Achromobacter spp. are ubiquitous in nature and are increasingly being recognized as emerging nosocomial pathogens. Nevertheless, to date, only 30 complete genome sequences of Achromobacter phages are available in GenBank, and nearly all of those phages were isolated on Achromobacter xylosoxidans. Here, we report the isolation and characterization of bacteriophage vB_AchrS_AchV4. To the best of our knowledge, vB_AchrS_AchV4 is the first virus isolated from Achromobacter spanius. Both vB_AchrS_AchV4 and its host, Achromobacter spanius RL_4, were isolated in Lithuania. VB_AchrS_AchV4 is a siphovirus, since it has an isometric head (64 ± 3.2 nm in diameter) and a non-contractile flexible tail (232 ± 5.4). The genome of vB_AchrS_AchV4 is a linear dsDNA molecule of 59,489 bp with a G+C content of 62.8%. It contains no tRNA genes, yet it includes 82 protein-coding genes, of which 27 have no homologues in phages. Using bioinformatics approaches, 36 vB_AchrS_AchV4 genes were given a putative function. A further four were annotated based on the results of LC-MS/MS. Comparative analyses revealed that vB_AchrS_AchV4 is a singleton siphovirus with no close relatives among known tailed phages. In summary, this work not only describes a novel and unique phage, but also advances our knowledge of genetic diversity and evolution of Achromobacter bacteriophages.
Collapse
|
10
|
Characterization of Novel Lytic Bacteriophages of Achromobacter marplantensis Isolated from a Pneumonia Patient. Viruses 2020; 12:v12101138. [PMID: 33049935 PMCID: PMC7600146 DOI: 10.3390/v12101138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023] Open
Abstract
Achromobacter spp. are becoming increasingly associated with lung infections in patients suffering from cystic fibrosis (CF). A. marplatensis, which is closely related to A. xylosoxidans, has been isolated from the lungs of CF patients and other human infections. This article describes the isolation, morphology and characterization of two lytic bacteriophages specific for an A. marplatensis strain isolated from a pneumonia patient. This host strain was the causal agent of hospital acquired pneumonia–the first clinical report of such an occurrence. Full genome sequencing revealed bacteriophage genomes ranging in size from 45901 to 46,328 bp. Transmission electron microscopy revealed that the two bacteriophages AMA1 and AMA2 belonged to the Siphoviridae family. Host range analysis showed that their host range did not extend to A. xylosoxidans. The possibility exists for future testing of such bacteriophages in the control of Achromobacter infections such as those seen in CF and other infections of the lungs. The incidence of antibiotic resistance in this genus highlights the importance of seeking adjuncts and alternatives in CF and other lung infections.
Collapse
|
11
|
Wittmann J, Turner D, Millard AD, Mahadevan P, Kropinski AM, Adriaenssens EM. From Orphan Phage to a Proposed New Family-the Diversity of N4-Like Viruses. Antibiotics (Basel) 2020; 9:E663. [PMID: 33008130 PMCID: PMC7650795 DOI: 10.3390/antibiotics9100663] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/29/2023] Open
Abstract
Escherichia phage N4 was isolated in 1966 in Italy and has remained a genomic orphan for a long time. It encodes an extremely large virion-associated RNA polymerase unique for bacterial viruses that became characteristic for this group. In recent years, due to new and relatively inexpensive sequencing techniques the number of publicly available phage genome sequences expanded rapidly. This revealed new members of the N4-like phage group, from 33 members in 2015 to 115 N4-like viruses in 2020. Using new technologies and methods for classification, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) has moved the classification and taxonomy of bacterial viruses from mere morphological approaches to genomic and proteomic methods. The analysis of 115 N4-like genomes resulted in a huge reassessment of this group and the proposal of a new family "Schitoviridae", including eight subfamilies and numerous new genera.
Collapse
Affiliation(s)
- Johannes Wittmann
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Andrew D. Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH UK;
| | | | - Andrew M. Kropinski
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|