1
|
Larbi I, Arbi M, Souiai O, Tougorti H, Butcher GD, Nsiri J, Badr C, Behi IE, Lachhab J, Ghram A. Phylogeographic Dynamics of H9N2 Avian Influenza Viruses in Tunisia. Virus Res 2024; 344:199348. [PMID: 38467378 PMCID: PMC10995884 DOI: 10.1016/j.virusres.2024.199348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Avian influenza virus subtype H9N2 is endemic in commercial poultry in Tunisia. This subtype affects poultry and wild birds in Tunisia and poses a potential zoonotic risk. Tunisian H9N2 strains carry, in their hemagglutinins, the human-like marker 226 L that is most influential in avian-to-human viral transmission. For a better understanding of how ecological aspects of the H9N2 virus and its circulation in poultry, migratory birds and environment shapes the spread of the dissemination of H9N2 in Tunisia, herein, we investigate the epidemiological, evolutionary and zoonotic potential of seven H9N2 poultry isolates and sequence their whole genome. Phylogeographic and phylodymanic analysis were used to examine viral spread within and among wild birds, poultry and environment at geographical scales. Genetic evolution results showed that the eight gene sequences of Tunisian H9N2 AIV were characterized by molecular markers involved with virulence and mammalian infections. The geographical distribution of avian influenza virus appears as a network interconnecting countries in Europe, Asia, North Africa and West Africa. The spatiotemporal dynamics analysis showed that the H9N2 virus was transmitted from Tunisia to neighboring countries notably Libya and Algeria. Interestingly, this study also revealed, for the first time, that there was a virus transmission between Tunisia and Morocco. Bayesian analysis showed exchanges between H9N2 strains of Tunisia and those of the Middle Eastern countries, analysis of host traits showed that duck, wild birds and environment were ancestry related to chicken. The subtypes phylodynamic showed that PB1 segment was under multiple inter-subtype reassortment events with H10N7, H12N5, H5N2 and H6N1 and that PB2 was also a subject of inter-subtype reassortment with H10N4.
Collapse
Affiliation(s)
- Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia.
| | - Marwa Arbi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Oussama Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Halima Tougorti
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Gary David Butcher
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Chaima Badr
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Imen El Behi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Jihene Lachhab
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| |
Collapse
|
2
|
Jbenyeni A, Croville G, Cazaban C, Guérin JL. Predominance of low pathogenic avian influenza virus H9N2 in the respiratory co-infections in broilers in Tunisia: a longitudinal field study, 2018-2020. Vet Res 2023; 54:88. [PMID: 37789451 PMCID: PMC10548753 DOI: 10.1186/s13567-023-01204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
Respiratory diseases are a health and economic concern for poultry production worldwide. Given global economic exchanges and migratory bird flyways, respiratory viruses are likely to emerge continuously in new territories. The primary aim of this study was to investigate the major pathogens involved in respiratory disease in Tunisian broiler poultry and their epidemiology. Between 2018 and 2020, broilers farms in northeastern Tunisia were monitored, and 39 clinically diseased flocks were sampled. Samples were screened for five viral and three bacterial respiratory pathogens using a panel of real-time PCR assays. The reemergence of H9N2 low pathogenic avian influenza virus (LPAIV) in commercial poultry was reported, and the Northern and Western African GI lineage strain was typed. The infectious bronchitis virus (IBV) GI-23 lineage and the avian metapneumovirus (aMPV) subtype B also were detected for the first time in broilers in Tunisia. H9N2 LPAIV was the most detected pathogen in the flocks tested, but rarely alone, as 15 of the 16 H9N2 positive flocks were co-infected. Except for infectious laryngotracheitis virus (ILTV), all of the targeted pathogens were detected, and in 61% of the respiratory disease cases, a combination of pathogens was identified. The major combinations were H9N2 + aMPV (8/39) and H9N2 + IBV (6/39), showing the high contribution of H9N2 LPAIV to the multifactorial respiratory diseases. This field survey provided evidence of the emergence of new respiratory viruses and the complexity of respiratory disease in Tunisia. A comprehensive and continuous surveillance strategy therefore is needed to better control respiratory pathogens in Tunisia.
Collapse
Affiliation(s)
- Adam Jbenyeni
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Ceva Santé Animale S.A., Libourne, France
| | | | | | - Jean-Luc Guérin
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
3
|
Larbi I, Ghedira K, Arbi M, Butcher GD, Rego N, Naya H, Tougorti H, Lachhab J, Behi IE, Nsiri J, Ghram A. Phylogenetic analysis and assessment of the pathogenic potential of the first H9N2 avian influenza viruses isolated from wild birds and Lagoon water in Tunisia. Virus Res 2022; 322:198929. [PMID: 36126884 DOI: 10.1016/j.virusres.2022.198929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
H9N2 avian influenza virus (AIV) has been isolated from various species of wild birds and domestic poultry worldwide. It has been reported since the late 1990s, that H9N2 AIV has infected humans as reported in some Asian and North African countries. This subtype has already been circulating and constituting a serious threat to the poultry industry in Tunisia back in 2009. To investigate zoonotic potential and pathogenicity of H9N2 AIV in chickens and mice in Tunisia, five strains have been isolated during the period from 2014 to 2018. Samples were withdrawn from several wild bird species and environment (Lagoon water) of Maamoura and Korba Lagoons as well as Kuriat Island. Phylogenetic analyzes demonstrated that the isolated H9N2 strains belonged to the G1-like sublineage and were close to AIV H9N2 poultry viruses from North Africa, West Africa and the Middle East. All strains carried in their hemagglutinin the residue 226 L, which is an important marker for avian-to-human viral transmission. The hemagglutinin cleavage site has several motifs: PSKSSR/G, PARSSR/G and HARSSR/G. The neuraminidase showed S372A and R403W substitutions that have been previously detected in H3N2 and H2N2 viruses that were reported in human pandemics. Many mutations associated with mammalian infections have been detected in internal proteins. Pathogenicity evaluation in chickens showed that GF/14 replicates effectively in the lungs, tracheas, spleens, kidneys and brains and that it was transmitted among contact chickens. However, GHG/18 replicates poorly in chickens and has not an efficient transmission in contact chickens. GF/14 and GHG/18 could not kill mice though they replicated in their respiratory tract and caused a significant body weight loss (p < 0.05). This study highlights the importance of H9N2 AIV monitoring in both migratory birds and the environment to prevent virus transmission to humans.
Collapse
Affiliation(s)
- Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Marwa Arbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Gary David Butcher
- College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo, Montevideo, Uruguay
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo, Montevideo, Uruguay; Departmento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Uruguay
| | - Halima Tougorti
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jihene Lachhab
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imen El Behi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
4
|
Genetic Evolution of Avian Influenza A (H9N2) Viruses Isolated from Domestic Poultry in Uganda Reveals Evidence of Mammalian Host Adaptation, Increased Virulence and Reduced Sensitivity to Baloxavir. Viruses 2022; 14:v14092074. [PMID: 36146881 PMCID: PMC9505320 DOI: 10.3390/v14092074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
A (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since established themselves in live bird markets. The aim of this study was to establish the subsequent genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses were isolated in embryonated eggs. One hundred and fifty H9N2 isolates were subjected to whole genome sequencing on the Illumina MiSeq platform. The sequence data analysis and comparison with contemporary isolates revealed that the virus was first introduced into Uganda in 2014 from ancestors in the Middle East. There has since been an increase in nucleotide substitutions and reassortments among the viruses within and between live bird markets, leading to variations in phylogeny of the different segments, although overall diversity remained low. The isolates had several mutations such as HA-Q226L and NS-I106M that enable mammalian host adaptation, NP-M105V, PB1-D3V, and M1-T215A known for increased virulence/pathogenicity and replication, and PA-E199D, NS-P42S, and M2-S31N that promote drug resistance. The PA-E199D substitution in particular confers resistance to the endonuclease inhibitor Baloxavir acid, which is one of the new anti-influenza drugs. Higher EC50 was observed in isolates with a double F105L+E199D substitution that may suggest a possible synergistic effect. These H9N2 viruses have established an endemic situation in live bird markets in Uganda because of poor biosecurity practices and therefore pose a zoonotic threat. Regular surveillance is necessary to further generate the needed evidence for effective control strategies and to minimize the threats.
Collapse
|
5
|
Spatiotemporal Dynamics, Evolutionary History and Zoonotic Potential of Moroccan H9N2 Avian Influenza Viruses from 2016 to 2021. Viruses 2022; 14:v14030509. [PMID: 35336916 PMCID: PMC8951762 DOI: 10.3390/v14030509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The H9N2 virus continues to spread in wild birds and poultry worldwide. At the beginning of 2016, the H9N2 Avian influenza virus (AIV) was detected in Morocco for the first time; despite the implementation of vaccination strategies to control the disease, the virus has become endemic in poultry in the country. The present study was carried out to investigate the origins, zoonotic potential, as well as the impact of vaccination on the molecular evolution of Moroccan H9N2 viruses. Twenty-eight (28) H9N2 viruses collected from 2016 to 2021 in Moroccan poultry flocks were isolated and their whole genomes sequenced. Phylogenetic and evolutionary analyses showed that Moroccan H9N2 viruses belong to the G1-like lineage and are closely related to viruses isolated in Africa and the Middle East. A high similarity among all the 2016–2017 hemagglutinin sequences was observed, while the viruses identified in 2018–2019 and 2020–2021 were separated from their 2016–2017 ancestors by long branches. Mutations in the HA protein associated with antigenic drift and increased zoonotic potential were also found. The Bayesian phylogeographic analyses revealed the Middle East as being the region where the Moroccan H9N2 virus may have originated, before spreading to the other African countries. Our study is the first comprehensive analysis of the evolutionary history of the H9N2 viruses in the country, highlighting their zoonotic potential and pointing out the importance of implementing effective monitoring systems.
Collapse
|
6
|
Guinat C, Vergne T, Kocher A, Chakraborty D, Paul MC, Ducatez M, Stadler T. What can phylodynamics bring to animal health research? Trends Ecol Evol 2021; 36:837-847. [PMID: 34034912 DOI: 10.1016/j.tree.2021.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022]
Abstract
Infectious diseases are a major burden to global economies, and public and animal health. To date, quantifying the spread of infectious diseases to inform policy making has traditionally relied on epidemiological data collected during epidemics. However, interest has grown in recent phylodynamic techniques to infer pathogen transmission dynamics from genetic data. Here, we provide examples of where this new discipline has enhanced disease management in public health and illustrate how it could be further applied in animal health. In particular, we describe how phylodynamics can address fundamental epidemiological questions, such as inferring key transmission parameters in animal populations and quantifying spillover events at the wildlife-livestock interface, and generate important insights for the design of more effective control strategies.
Collapse
Affiliation(s)
- Claire Guinat
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Timothee Vergne
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Arthur Kocher
- Transmission, Infection, Diversification & Evolution (tide) group, Max Planck Institute for the Science of Human History, Kahlaische str. 10, 07745 Jena, Germany
| | - Debapryio Chakraborty
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Mathilde C Paul
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Mariette Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|