1
|
Liu J, Wang X, Ren T, Qin J, Qin Y, Ouyang K, Chen Y, Huang W, Wei Z. Identification of B-cell epitope on the N protein of type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) using monoclonal antibody and construction of epitope-mutated virus. Virology 2024; 596:110102. [PMID: 38749084 DOI: 10.1016/j.virol.2024.110102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/15/2024]
Abstract
The escalating epidemic of PRRSV-1 in China has prompted widespread concern regarding the evolution of strains, disparities in pathogenicity to herds, and immunological detection of emerging strains. The nucleocapsid (N) protein, as a highly conserved protein with immunogenic properties in PRRSV, is a subject of intensive study. In this research, the recombinant His-N protein was expressed based on the N gene of PRRSV-1 using a prokaryotic expression system and then administered to BALB/c mice. A cell fusion protocol was implemented between SP2/0 cells and splenocytes, resulting in the successful screening of a monoclonal antibody against the N protein, designated as mAb 2D7, by indirect ELISA. Western Blot analysis and Indirect Immunofluorescence Assay (IFA) confirmed that mAb 2D7 positively responded to PRRSV-1. By constructing and expressing a series of truncated His-fused N proteins, a B-cell epitope of N protein, 59-AAEDDIR-65, was identified. A sequence alignment of two genotypes of PRRSV revealed that this epitope is relatively conserved in PRRSV, yet more so in genotype 1. Cross-reactivity analysis by Western blot analysis demonstrated that the B-cell epitope containing D62Y mutation could not be recognized by mAb 2D7. The inability of mAb 2D7 to recognize the epitope carrying the D62Y mutation was further determined using an infectious clone of PRRSV. This research may shed light on the biological significance of the N protein of PRRSV, paving the way for the advancement of immunological detection and development of future recombinant marker vaccine.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Xindong Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Tongwei Ren
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jianguang Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China.
| |
Collapse
|
2
|
Zhang M, Qian B, Veit M. Engineering and characterizing porcine reproductive and respiratory syndrome virus with separated and tagged genes encoding the minor glycoproteins. Vet Microbiol 2024; 294:110125. [PMID: 38795404 DOI: 10.1016/j.vetmic.2024.110125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/27/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen affecting pigs and belongs to the enveloped plus-stranded RNA virus family Arteriviridae. A unique feature of Arteriviruses is that the genes encoding the structural proteins overlap at their 3` and 5` ends. This impedes mutagenesis opportunities and precludes the binding of short peptides for antibody detection, as this would alter the amino acids encoded by the overlapping gene. In this study, we aimed to generate infectious PRRSV variants with separated genes encoding the minor glycoproteins Gp2, Gp3, and Gp4, accompanied by appended tags for detection. All recombinant genomes facilitate the release of infectious virus particles into the supernatant of transfected 293 T cells, as evidenced by immunofluorescence of infected MARC-145 cells using anti-nucleocapsid antibodies. Furthermore, expression of Gp2-Myc and Gp3-HA was confirmed through immunofluorescence and western blot analysis with tag-specific antibodies. However, after two passages of Gp2-Myc and Gp3-HA viruses, the appended tags were completely removed as indicated by sequencing the viral genome. Recombinant viruses with separated Gp2 and Gp3 genes remained stable for at least nine passages, while those with Gp3 and Gp4 genes separated reverted to wild type after only four passages. Notably, this virus exhibited significantly reduced titers in growth assays. Furthermore, we introduced a tag to the C-terminus of Gp4. The Gp4-HA virus was consistently stable for at least 10 passages, and the HA-tag was detectable by western blotting and immunofluorescence.
Collapse
Affiliation(s)
- Minze Zhang
- Free University Berlin, Faculty of Veterinary Medicine, Institute of Virology, Robert von Ostertagstr 7, Berlin 14163, Germany
| | - Bang Qian
- Free University Berlin, Faculty of Veterinary Medicine, Institute of Virology, Robert von Ostertagstr 7, Berlin 14163, Germany
| | - Michael Veit
- Free University Berlin, Faculty of Veterinary Medicine, Institute of Virology, Robert von Ostertagstr 7, Berlin 14163, Germany.
| |
Collapse
|
3
|
Wang J, Yan J, Wang S, Chen R, Xing Y, Liu Q, Gao S, Zhu Y, Li J, Zhou Y, Shan T, Tong W, Zheng H, Kong N, Jiang Y, Liu C, Tong G, Yu H. An Expeditious Neutralization Assay for Porcine Reproductive and Respiratory Syndrome Virus Based on a Recombinant Virus Expressing Green Fluorescent Protein. Curr Issues Mol Biol 2024; 46:1047-1063. [PMID: 38392184 PMCID: PMC10887926 DOI: 10.3390/cimb46020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Due to the extensive genetic and antigenic variation in Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), as well as its rapid mutability and evolution, PRRS prevention and control can be challenging. An expeditious and sensitive neutralization assay for PRRSV is presented to monitor neutralizing antibodies (NAbs) in serum during vaccine research. Here, a PRRSV expressing eGFP was successfully rescued with reverse genetics based on the infectious clone HuN4-F112-eGFP which we constructed. The fluorescent protein expressions of the reporter viruses remained stable for at least five passages. Based on this reporter virus, the neutralization assay can be easily used to evaluate the level of NAbs by counting cells with green fluorescence. Compared with the classical CPE assay, the newly developed assay increases sensitivity by one- to four-fold at the early antibody response stage, thus saving 2 days of assay waiting time. By using this assay to unveil the dynamics of neutralizing antibodies against PRRSV, priming immunity through either a single virulent challenge or only vaccination could produce limited NAbs, but re-infection with PRRSV would induce a faster and stronger NAb response. Overall, the novel HuN4-F112-eGFP-based neutralization assay holds the potential to provide a highly efficient platform for evaluating the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Juan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiecong Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuaiyong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ronglin Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanru Xing
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Qingyan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuolei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yuxiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiannan Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
4
|
Zhang H, Duan K, Du Y, Xiao S, Fang L, Zhou Y. One-Step Assembly of a PRRSV Infectious cDNA Clone and a Convenient CRISPR/Cas9-Based Gene-Editing Technology for Manipulation of PRRSV Genome. Viruses 2023; 15:1816. [PMID: 37766223 PMCID: PMC10536534 DOI: 10.3390/v15091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has been a persistent challenge for the swine industry for over three decades due to the lack of effective treatments and vaccines. Reverse genetics systems have been extensively employed to build rapid drug screening platforms and develop genetically engineered vaccines. Herein, we rescued recombinant PRRS virus (rPRRSV) WUH3 using an infectious cDNA clone of PRRSV WUH3 acquired through a BstXI-based one-step-assembly approach. The rPRRSV WUH3 and its parental PRRSV WUH3 share similar plaque sizes and multiple-step growth curves. Previously, gene-editing of viral genomes depends on appropriate restrictive endonucleases, which are arduous to select in some specific viral genes. Thus, we developed a restrictive endonucleases-free method based on CRISPR/Cas9 to edit the PRRSV genome. Using this method, we successfully inserted the exogenous gene (EGFP gene as an example) into the interval between ORF1b and ORF2a of the PRRSV genome to generate rPRRSV WUH3-EGFP, or precisely mutated the lysine (K) at position 150 of PRRSV nsp1α to glutamine (Q) to acquire rPRRSV WUH3 nsp1α-K150Q. Taken together, our study provides a rapid and convenient method for the development of genetically engineered vaccines against PRRSV and the study on the functions of PRRSV genes.
Collapse
Affiliation(s)
- Hejin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kaiqi Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yingbin Du
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
5
|
Mo Q, Wang H, He W, Lin S, Xie X, Wang Y, Wang X, Ouyang K, Chen Y, Huang W, Wei Z. Simultaneous expression of three reporter proteins from a porcine reproductive and respiratory syndrome virus-based vector. J Virol Methods 2023; 316:114711. [PMID: 36921673 DOI: 10.1016/j.jviromet.2023.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
The mechanism of discontinuous transcription for the synthesis of a series of sub-genomic mRNAs to express the structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV) potentially allows for the simultaneous expression of multiple foreign genes. This can occur by insertion of multiple novel independent transcription units between the ORF sequences of the PRRSV genome. Here, an expression cassette consisting of a red fluorescent protein (RFP) gene flanked at its 3' end by transcription-regulating sequences (TRS) and an expression cassette consisting of an iLOV gene flanked at its 5' end by TRS, was constructed. The resulting expression cassette containing a RFP and an iLOV gene were introduced between ORF1b and 2 as well as ORF7 and 3'UTR, respectively, in an infectious PRRSV cDNA clone. Transfection of the resulting clone (pGX-12RFP-73iLOV) into cells resulted in the recovery of a recombinant virus (rGX-12RFP-73iLOV). Simultaneous expression of RFP and iLOV was observed in MARC-145 cells infected with rGX-RFP-iLOV. To test the ability of the PRRSV genome to express all three reporter genes simultaneously, an expression cassette containing the Gluc gene and one containing the iLOV gene were also inserted in between ORF1b and 2 as well as ORF7 and 3'UTR, respectively. This was performed in a recently obtained infectious PRRSV cDNA clone carrying a RFP gene in nsp2. Transfection of the construct (pGX-R-Gluc-iLOV) carrying the three reporter genes into cells allowed the rescue of the recombinant reporter virus (rGX-R-Gluc-iLOV) which showed similar growth characteristics to the parental virus but yielded 100-fold less infectious viruses. Fluorescence microscopy of cells infected with rGX-R-Gluc-iLOV demonstrated the presence of both RFP and iLOV genes. Gluc activities in supernatants harvested at different time points from cells infected with recombinant viruses carrying Gluc showed increased levels of Gluc activity as the infection progressed. This indicated that Gluc gene as well as its activity were acceptable parameters to monitor viral propagation. Our results indicate that it is possible to introduce at least three foreign proteins simultaneously in a PRRSV-based vector and such studies will prove invaluable in our future understanding of these viruses.
Collapse
Affiliation(s)
- Qingrong Mo
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Hao Wang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Wei He
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Siyuan Lin
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Xin Xie
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Yuxu Wang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Xindong Wang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Kang Ouyang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Ying Chen
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Weijian Huang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Zuzhang Wei
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China.
| |
Collapse
|
6
|
Jiang Y, Gao F, Li L, Zhou Y, Tong W, Yu L, Zhang Y, Zhao K, Zhu H, Liu C, Li G, Tong G. The rPRRSV-E2 strain exhibited a low level of potential risk for virulence reversion. Front Vet Sci 2023; 10:1128863. [PMID: 36960147 PMCID: PMC10027928 DOI: 10.3389/fvets.2023.1128863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Classical Swine Fever Virus (CSFV) are two important pathogens, which cause serious impact on swine industry worldwide. In our previous research, rPRRSV-E2, the recombinant PRRSV expressing CSFV E2 protein, could provide sufficient protection against the lethal challenge of highly pathogenic PRRSV and CSFV, and could maintained genetically stable in vitro. Here, to evaluate the virulence reversion potential risk, rPRRSV-E2 had been continuously passaged in vivo, the stability of E2 expression and virulence of the passage viruses were analyzed. The results showed that no clinical symptoms or pathological changes could be found in the inoculated groups, and there were no significant differences of viraemia among the test groups. Sequencing and IFA analysis showed that the coding gene of exogenous CSFV E2 protein existed in the passaged viruses without any sequence mutations, deletions or insertions, and could expressed steadily. It could be concluded that the foreign CSFV E2 gene in the genome of rPRRSV-E2 could be maintained genetically stable in vivo, and rPRRSV-E2 strain had relatively low level of potential risk for virulence reversion.
Collapse
Affiliation(s)
- Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kuan Zhao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haojie Zhu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- *Correspondence: Guoxin Li
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- Guangzhi Tong
| |
Collapse
|
7
|
Li Y, Ren C, Li C, Xiao Y, Zhou Y. A Recombinant Porcine Reproductive and Respiratory Syndrome Virus Stably Expressing a Gaussia Luciferase for Antiviral Drug Screening Assay and Luciferase-Based Neutralization Assay. Front Microbiol 2022; 13:907281. [PMID: 35633700 PMCID: PMC9136234 DOI: 10.3389/fmicb.2022.907281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022] Open
Abstract
The reverse genetics system is a valuable tool in the virological study of RNA viruses. With the availability of reverse genetics, the porcine reproductive and respiratory syndrome virus (PRRSV) has been utilized as a viral vector for the expression of foreign genes of interest. Here, we constructed a full-length cDNA clone of a highly pathogenic PRRSV (HP-PRRSV) TA-12 strain. Using this cDNA clone, we generated a reporter virus expressing a gaussia luciferase (Gluc) via an additional subgenomic RNA between ORF7 and 3′UTR. This reporter virus exhibited similar growth kinetics to the wild-type (WT) virus and remained genetically stable for at least ten passages in MARC-145 cells. In cells infected with this reporter virus, the correlation between the expression levels of Gluc in culture media and the virus titers suggested that Gluc is a good indicator of the reporter virus infection. With this reporter virus, we further established the Gluc readout-based assays for antiviral drug screening and serum neutralizing antibody detection that exhibited comparable performance to the classical assays. Taken together, we established a reverse genetics system of HP-PRRSV and generated a novel reporter virus that could serve as a valuable tool for antiviral drug screening and serum neutralizing antibody detection.
Collapse
Affiliation(s)
- Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
- *Correspondence: Yanhua Li,
| | - Cicheng Ren
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chenxi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Yihong Xiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yanyang Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Evans JD, Banmeke O, Palmer-Young EC, Chen Y, Ryabov EV. Beeporter: Tools for high-throughput analyses of pollinator-virus infections. Mol Ecol Resour 2021; 22:978-987. [PMID: 34612590 DOI: 10.1111/1755-0998.13526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/08/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
Pollinators are in decline thanks to the combined stresses of disease, pesticides, habitat loss, and climate. Honey bees face numerous pests and pathogens but arguably none are as devastating as Deformed wing virus (DWV). Understanding host-pathogen interactions and virulence of DWV in honey bees is slowed by the lack of cost-effective high-throughput screening methods for viral infection. Currently, analysis of virus infection in bees and their colonies is tedious, requiring a well-equipped molecular biology laboratory and the use of hazardous chemicals. Here we describe virus clones tagged with green fluorescent protein (GFP) or nanoluciferase (nLuc) that provide high-throughput detection and quantification of virus infections. GFP fluorescence is measured noninvasively in living bees via commonly available long-wave UV light sources and a smartphone camera, or a standard ultraviolet transilluminator gel imaging system. Nonlethal monitoring with GFP allows continuous screening of virus growth and serves as a direct breeding tool for identifying honey bee parents with increased antiviral resistance. Expression using the nLuc reporter strongly correlates with virus infection levels and is especially sensitive. Using multiple reporters, it is also possible to visualize competition, differential virulence, and host tissue targeting by co-occuring pathogens. Finally, it is possible to directly assess the risk of cross-species "spillover" from honey bees to other pollinators and vice versa.
Collapse
Affiliation(s)
- Jay D Evans
- Bee Research Laboratory, USDA-ARS Agricultural Research Service, Beltsville, Maryland, USA
| | - Olubukola Banmeke
- Bee Research Laboratory, USDA-ARS Agricultural Research Service, Beltsville, Maryland, USA
| | - Evan C Palmer-Young
- Bee Research Laboratory, USDA-ARS Agricultural Research Service, Beltsville, Maryland, USA
| | - Yanping Chen
- Bee Research Laboratory, USDA-ARS Agricultural Research Service, Beltsville, Maryland, USA
| | - Eugene V Ryabov
- Bee Research Laboratory, USDA-ARS Agricultural Research Service, Beltsville, Maryland, USA
| |
Collapse
|
9
|
Synthesis and Characterization of a Full-Length Infectious cDNA Clone of Tomato Mottle Mosaic Virus. Viruses 2021; 13:v13061050. [PMID: 34206030 PMCID: PMC8229035 DOI: 10.3390/v13061050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Tomato mottle mosaic virus (ToMMV) is a noteworthy virus which belongs to the Virgaviridae family and causes serious economic losses in tomato. Here, we isolated and cloned the full-length genome of a ToMMV Chinese isolate (ToMMV-LN) from a naturally infected tomato (Solanum lycopersicum L.). Sequence analysis showed that ToMMV-LN contains 6399 nucleotides (nts) and is most closely related to a ToMMV Mexican isolate with a sequence identity of 99.48%. Next, an infectious cDNA clone of ToMMV was constructed by a homologous recombination approach. Both the model host N. benthamiana and the natural hosts tomato and pepper developed severe symptoms upon agroinfiltration with pToMMV, which had a strong infectivity. Electron micrographs indicated that a large number of rigid rod-shaped ToMMV virions were observed from the agroinfiltrated N. benthamiana leaves. Finally, our results also confirmed that tomato plants inoculated with pToMMV led to a high infection rate of 100% in 4–5 weeks post-infiltration (wpi), while pepper plants inoculated with pToMMV led to an infection rate of 40–47% in 4–5 wpi. This is the first report of the development of a full-length infectious cDNA clone of ToMMV. We believe that this infectious clone will enable further studies of ToMMV genes function, pathogenicity and virus–host interaction.
Collapse
|
10
|
Wang H, Xie X, He W, Wang Y, Ren T, Ouyang K, Chen Y, Huang W, Wei Z. Generation of a Recombinant Porcine Reproductive and Respiratory Syndrome Virus Stably Expressing Two Marker Genes. Front Vet Sci 2020; 7:548282. [PMID: 33195521 PMCID: PMC7641969 DOI: 10.3389/fvets.2020.548282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been used as a gene expression vector in the development of vaccines. Most of these recombinant PRRSV vectors express only a single foreign gene through either an internal insertion in the hypervariable region of nsp2 or expression cassette and some of these recombinant vectors are genetically unstable. Here, we combined internal insertion in nsp2 and expression cassette methods to generate a novel recombinant PRRSV stably expressing the red fluorescence protein (RFP) and the green fluorescence protein (GFP) genes. Biological characteristic analysis of the recombinant PRRSV carrying the two marker genes, rGX-RFP-GFP, showed that it displayed similar growth kinetics and yet it yielded less infectious viruses when compared to the parental virus rGXAM. Co-expression of both the RFP and GFP was observed using confocal fluorescence microscopy when the rGX-RFP-GFP viruses infected MARC-145 cells. Furthermore, the PRRSV-based two-marker gene expression vector is genetically stable during 20 serial passages in MARC-145 cells. These data demonstrate that it is possible to express two interested immunogens from a single PRRSV vector.
Collapse
Affiliation(s)
- Hao Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xin Xie
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wei He
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuxu Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tongwei Ren
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|