1
|
Yang Z, Fei M, Wu G, Xiang Y, Zhong J, Su JE, Chen Y. Molecular characterization of a novel mycotombus‑like virus isolated from the phytopathogenic fungus Nigrospora oryzae. Arch Virol 2024; 169:224. [PMID: 39424630 DOI: 10.1007/s00705-024-06150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 10/21/2024]
Abstract
In this study, we identified a new mycotombus-like mycovirus from the phytopathogenic fungus Nigrospora oryzae, which was tentatively designated as "Nigrospora oryzae umbra-like virus 1" (NoULV1). The complete genome of NoULV1 is 3,381 nt long, containing two open reading frames (ORF1 and ORF2). ORF1 encodes a hypothetical protein with an unknown function, while ORF2 encodes an RNA-dependent RNA polymerase (RdRp) with a conserved RdRp domain containing a metal-binding 'GDN' triplet in motif C, which is distinct from the 'GDD' motif found in most + ssRNA mycoviruses. A homology search revealed that the RdRp encoded by ORF2 was similar to the RdRp of umbra-like mycoviruses. Phylogenetic analysis based on the RdRp indicated that NoULV1 was grouped into a clade together with umbra-like mycoviruses belonging to the proposed family "Mycotombusviridae".
Collapse
Affiliation(s)
- Zhijuan Yang
- Dali Tobacco Company of Yunnan Province, Dali City, 671000, Yunnan Province, P.R. China
| | - Mingliang Fei
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming City, 650021, Yunnan Province, P.R. China
| | - Guicheng Wu
- Yunnan Aromatic Tobacco Company, Baoshan City, 678000, Yunnan Province, P.R. China
| | - Yansuobao Xiang
- Yunnan Aromatic Tobacco Company, Baoshan City, 678000, Yunnan Province, P.R. China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, 410128, Hunan Province, P.R. China
| | - Jia En Su
- Dali Tobacco Company of Yunnan Province, Dali City, 671000, Yunnan Province, P.R. China.
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming City, 650021, Yunnan Province, P.R. China.
| |
Collapse
|
2
|
Zhong J, Sui WW, Li P, Tang QJ, Liu TB, Xiao YS. Characterization of a novel victorivirus from Nigrospora chinensis, a fungus isolated from tobacco. Arch Virol 2022; 167:2851-2855. [PMID: 36255526 DOI: 10.1007/s00705-022-05619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Here, we characterized a new mycovirus from the fungus Nigrospora chinensis, which was named "Nigrospora chinensis victorivirus 1" (NcVV1). The NcVV1 genome is 5283 bp in length, containing two continuous open reading frames (ORFs), ORF1 and ORF2. ORF1 and ORF2 were predicted to encode a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRp), respectively. The stop codon of ORF1 overlaps with the start codon of ORF2 by the tetranucleotide sequence AUGA. Phylogenetic analysis based on amino acid sequences of RdRp and CP indicated that NcVV1 clustered with members of the genus Victorivirus in the family Totiviridae. To our knowledge, this was the first report of a mycovirus infecting N. chinensis.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| | - Wen Wen Sui
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Ping Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Qian Jun Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Tian Bo Liu
- Tobacco Research Institute of Hunan Province, Changsha, 410004, Hunan, People's Republic of China.
| | - Yan Song Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, 423000, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Novel Mycoviruses Discovered from a Metatranscriptomics Survey of the Phytopathogenic Alternaria Fungus. Viruses 2022; 14:v14112552. [PMID: 36423161 PMCID: PMC9693364 DOI: 10.3390/v14112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria fungus can cause notable diseases in cereals, ornamental plants, vegetables, and fruits around the world. To date, an increasing number of mycoviruses have been accurately and successfully identified in this fungus. In this study, we discovered mycoviruses from 78 strains in 6 species of the genus Alternaria, which were collected from 10 pear production areas using high-throughput sequencing technology. Using the total RNA-seq, we detected the RNA-dependent RNA polymerase of 19 potential viruses and the coat protein of two potential viruses. We successfully confirmed these viruses using reverse transcription polymerase chain reaction with RNA as the template. We identified 12 mycoviruses that were positive-sense single-stranded RNA (+ssRNA) viruses, 5 double-strand RNA (dsRNA) viruses, and 4 negative single-stranded RNA (-ssRNA) viruses. In these viruses, five +ssRNA and four -ssRNA viruses were novel mycoviruses classified into diverse the families Botourmiaviridae, Deltaflexivirus, Mymonaviridea, and Discoviridae. We identified a novel -ssRNA mycovirus isolated from an A. tenuissima strain HB-15 as Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2). Additionally, we characterized a novel +ssRNA mycovirus isolated from an A. tenuissima strain SC-8 as Alternaria tenuissima deltaflexivirus 1 (AtDFV1). According to phylogenetic and sequence analyses, we determined that AtNSRV2 was related to the viruses of the genus Sclerotimonavirus in the family Mymonaviridae. We also found that AtDFV1 was related to the virus family Deltaflexivirus. This study is the first to use total RNA sequencing to characterize viruses in Alternaria spp. These results expand the number of Alternaria viruses and demonstrate the diversity of these mycoviruses.
Collapse
|
4
|
Zhong J, Li P, Gao BD, Zhong SY, Li XG, Hu Z, Zhu JZ. Novel and diverse mycoviruses co-infecting a single strain of the phytopathogenic fungus Alternaria dianthicola. Front Cell Infect Microbiol 2022; 12:980970. [PMID: 36237429 PMCID: PMC9552818 DOI: 10.3389/fcimb.2022.980970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria dianthicola is a pathogenic fungus that causes serious leaf or flower blight on some medicinal plants worldwide. In this study, multiple dsRNA bands in the range of 1.2-10 kbp were found in a Alternaria dianthus strain HNSZ-1, and eleven full-length cDNA sequences of these dsRNA were obtained by high-throughput sequencing, RT-PCR detection and conventional Sanger sequencing. Homology search and phylogenetic analyses indicated that the strain HNSZ-1 was infected by at least nine mycoviruses. Among the nine, five viruses were confirmed to represent novel viruses in the families Hypoviridae, Totiviridae, Mymonaviridae and a provisional family Ambiguiviridae. Virus elimination and horizontal transmission indicated that the (-) ssRNA virus, AdNSRV1, might be associated with the slow growth and irregular colony phenotype of the host fungus. As far as we know, this is the first report for virome characterization of A. dianthus, which might provide important insights for screening of mycovirus for biological control and for studying of the interactions between viruses or viruses and their host.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Ping Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Bi Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Shuang Yu Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Xiao Gang Li
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Zhao Hu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Jun Zi Zhu
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| |
Collapse
|
5
|
Complete genome sequence of the first chrysovirus from the phytopathogenic fungus Alternaria solani on potato in China. Arch Virol 2021; 166:3493-3497. [PMID: 34622361 DOI: 10.1007/s00705-021-05263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
The complete genome sequence of a double-stranded RNA (dsRNA) mycovirus that was isolated from Alternaria solani strain DT-10 causing potato foliar disease was determined. The virus, designated as "Alternaria solani chrysovirus 1" (AsCV1), has four dsRNA segments (dsRNA 1-4) with a length of 3600 bp, 3128 bp, 2996 bp, and 2714 bp, respectively. The RNA-dependent RNA polymerase (RdRp, 1084 amino acids [aa]), putative capsid protein (905 aa), alphachryso-P3 (835 aa), and alphachryso-P4 (729 aa) were encoded by dsRNA1, dsRNA2, dsRNA3, and dsRNA4, respectively, which had the highest sequence identity of 41.77%-72.38% to their counterparts in Helminthosporium victoriae virus 145S (HvV145S) of the genus Alphachrysovirus, family Chrysoviridae. Moreover, the 5'-untranslated regions (UTRs) of AsCV1 dsRNA 1-4, which contained several unique inserts (3-37 bp) and deletions (5-64 bp), shared 51.65%-68.01% identity with those of HvV145S. Phylogenetic analysis based on RdRp sequences showed that AsCV1 clustered the most closely with HvV145S. Considering its distinct host specificity, the low sequence similarity of its encoded proteins to those of other viruses, the unusual features of the 5'-UTRs of its dsRNA 1-4, and the phylogenetic position of its RdRp gene, AsCV1 should be considered a member of a new species in the genus Alphachrysovirus. To the best of our knowledge, this is the first alphachrysovirus identified from phytopathogenic A. solani.
Collapse
|
6
|
Molecular characterization of a novel fusarivirus infecting the plant-pathogenic fungus Alternaria solani. Arch Virol 2021; 166:2063-2067. [PMID: 33983501 DOI: 10.1007/s00705-021-05105-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
A novel mycovirus belonging to the proposed family "Fusariviridae" was discovered in Alternaria solani by sequencing a cDNA corresponding to double-stranded RNA extracted from this phytopathogenic fungus. The virus was tentatively named "Alternaria solani fusarivirus 1" (AsFV1). AsFV1 has a single-stranded positive-sense (+ssRNA) genome of 6845 nucleotides containing three open reading frames (ORFs) and a poly(A) tail. The largest ORF, ORF1, encodes a large polypeptide of 1,556 amino acids (aa) with conserved RNA-dependent RNA polymerase and helicase domains. The ORF2 and ORF3 have overlapping regions, encoding a putative protein of 522 amino acids (aa) and a putative protein of 105 amino acids (aa), respectively, both of unknown function. A multiple sequence alignment and phylogenetic analysis revealed that AsFV1 could be a new member of the "Fusariviridae". This is the first report of the full-length nucleotide sequence of a fusarivirus that infects Alternaria solani.
Collapse
|
7
|
A novel mycovirus isolated from the plant-pathogenic fungus Botryosphaeria dothidea. Arch Virol 2021; 166:1267-1272. [PMID: 33598815 DOI: 10.1007/s00705-021-04983-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022]
Abstract
A novel virus, Botryosphaeria dothidea bipartite mycovirus 1 (BdBMV1), was isolated from the plant-pathogenic fungus Botryosphaeria dothidea strain HNDT1, and the complete nucleotide sequence of its genome was determined. BdBMV1 consists of two genomic segments. The first segment is 1,976 bp in length and contains a single open reading frame (ORF) encoding the RNA-dependent RNA polymerase (RdRp) (68.95 kDa). The second segment is 1,786 bp in length and also contains a single ORF encoding a hypothetical protein of 35.19 kDa of unknown function. Based on the sequence of its RdRp, BdBMV1 is phylogenetically related to several other unclassified dsRNA mycoviruses, including Cryphonectria parasitica bipartite mycovirus 1 (CpBV1), and has a distant relationship to members of the family Partitiviridae.
Collapse
|