1
|
Zheng Y, Chen M, Li X, Dai F, Gao Z, Deng Q, Fang S, Zhang S, Pan S. Four distinct isolates of a novel polymycovirus identified in Setosphaeria turcica. Arch Virol 2023; 168:189. [PMID: 37351692 DOI: 10.1007/s00705-023-05819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Isolation and analysis of double-stranded RNA (dsRNA) from the phytopathogenic fungus Setosphaeria turcica f. sp. zeae revealed the presence of a new double-stranded RNA (dsRNA) virus, tentatively named "Setosphaeria turcica polymycovirus 2" (StPmV2). The genome of StPmV2 consists of five segments (dsRNA1-5), ranging in size from 965 bp to 2462 bp. Each dsRNA contains one open reading frame (ORF) flanked by 5' and 3' untranslated regions (UTRs) with conserved terminal sequences. The putative protein encoded by dsRNA1 shows 64.52% amino acid sequence identity to the RNA-dependent RNA polymerase (RdRp) of the most closely related virus, Cladosporium cladosporioides virus 1, which belongs to the family Polymycoviridae. dsRNAs 2-4 encode the putative coat protein, methyltransferase (MTR), and proline-alanine-serine-rich protein (PASrp), respectively, and dsRNA5 encodes a protein of unknown function. Phylogenetic analysis based on the RdRp protein indicated that StPmV2 clustered with members of the family Polymycoviridae and is therefore a new mycovirus belonging to the genus Polymycovirus in the family Polymycoviridae. In addition, three other distinct isolates of StPmV2 were identified: one isolated from S. turcica f. sp. zeae and two from S. turcica f. sp. sorghi. To our knowledge, this is the first report of a polymycovirus infecting both S. turcica f. sp. zeae and S. turcica f. sp. sorghi.
Collapse
Affiliation(s)
- Yun Zheng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Miaomiao Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Xiquan Li
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China
| | - Fei Dai
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China
| | - Zhongnan Gao
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Qingchao Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Shouguo Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China.
| | - Shouhui Pan
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China.
| |
Collapse
|
2
|
Molecular characterization of a novel polymycovirus identified in the phytopathogenic fungus Colletotrichum gloeosporioides. Arch Virol 2022; 167:2805-2810. [PMID: 36308546 DOI: 10.1007/s00705-022-05591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022]
Abstract
A novel polymycovirus isolated from the plant-pathogenic fungus Colletotrichum gloeosporioides was identified. The viral genome is composed of nine double-stranded RNA segments, ranging in size from 699 bp to 2,444 bp. With the exception of dsRNA5, which contains two open reading frames (ORF5-1 and ORF5-2), the other dsRNA segments each contain one ORF. The proteins encoded by ORFs 1-8 are homologous to the proteins encoded by ORFs 1-8 of Colletotrichum camelliae filamentous virus 1 (CcFV-1). The amino acid sequences of the RNA-dependent RNA polymerase (RdRp) encoded by ORF1 and the viral methyltransferase encoded by ORF3 share 87.6% and 83.3% identity with CcFV-1. The proline-alanine-serine-rich protein (PASrp) encoded by ORF4 shares 86.6% sequence identity with that of CcFV-1. The proteins encoded by ORFs 2, 5 - 1, 6, 7, and 8 share 86.6%, 82.5%, 89.0%, 45.7%, and 95.5% sequence identity, respectively, with the corresponding proteins of CcFV-1. dsRNA9 is a defective copy of dsRNA2 that lacks a stretch of 1556 bp (nt 519 to nt 2074). Phylogenetic analysis based on the RdRp protein indicated that the novel virus clustered with members of the family Polymycoviridae, and based on the above results, we have tentatively named it "Colletotrichum gloeosporioides polymycovirus virus 1" (CgPmV1). To our knowledge, this is the first report of a polymycovirus with a defective dsRNA genome in C. gloeosporioides.
Collapse
|
3
|
Teng L, Chen S, Hu Z, Chen J, Liu H, Zhang T. Molecular characterization and transcriptomic analysis of a novel polymycovirus in the fungus Talaromyces amestolkiae. Front Microbiol 2022; 13:1008409. [PMID: 36386701 PMCID: PMC9645161 DOI: 10.3389/fmicb.2022.1008409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Talaromyces amestolkiae is an important fungal species owing to its ubiquity in soils, plants, air, and food. In this study, we identified a novel six-segmented polymycovirus, Talaromyces amestolkiae polymycovirus 1 (TaPmV-1). Each of the double-stranded (ds) RNA segments of TaPmV-1 contained a single open reading frame, and the proteins encoded by dsRNA1, dsRNA2, dsRNA3, and dsRNA 5 shared significant amino acid identities of 56, 40, 47, and 43%, respectively, with the corresponding proteins of Aspergillus fumigatus polymycovirus-1(AfuPmV-1). DsRNA1, dsRNA3, and dsRNA5 of TaPmV-1 encoded an RNA-dependent RNA polymerase (RdRp), a viral methyltransferase, and a PAS-rich protein, respectively. The functions of the proteins encoded by dsRNA2, dsRNA4, and dsRNA6 have not been elucidated. Comparison of the virus-infected strain LSH3 with virus-cured strain LSHVF revealed that infection with TaPmV-l may reduce the production of red pigments and induce the clustering of fungal sclerotia. Furthermore, transcriptomic analyses demonstrated that infection with TaPmV-l downregulated the expression of transcripts related to metabolism, and may correlate with the reduced production of red pigments and clustering of sclerotia in T. amestolkiae. These results of this study provide novel insights into the mechanism of fungal gene regulation by polymycovirus infections at the transcriptome level, and this study is the first to report a novel polymycovirus of T. amestolkiae.
Collapse
Affiliation(s)
- Li Teng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Sen Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Jili Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Hongmei Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Hongmei Liu, ; Tingting Zhang,
| | - Tingting Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- *Correspondence: Hongmei Liu, ; Tingting Zhang,
| |
Collapse
|
4
|
Li B, Cao Y, Ji Z, Zhang J, Meng X, Dai P, Hu T, Wang S, Cao K, Wang Y. Coinfection of Two Mycoviruses Confers Hypovirulence and Reduces the Production of Mycotoxin Alternariol in Alternaria alternata f. sp. mali. Front Microbiol 2022; 13:910712. [PMID: 35756001 PMCID: PMC9218907 DOI: 10.3389/fmicb.2022.910712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022] Open
Abstract
Alternaria leaf blotch caused by Alternaria alternata apple pathotype (Alternaria mali) is an important fungal disease that affects the production of apples worldwide. Mycoviruses harbored in plant pathogenic fungi can confer hypovirulence in their hosts and have attracted widespread attention as potential biocontrol tools. In this study, the coinfection of two mycoviruses, named A. alternata chrysovirus 1 strain QY2 (AaCV1-QY2) and A. alternata magoulivirus 1 (AaMV1), respectively, were isolated from A. alternata f. sp. mali strain QY21. Sequence analyses revealed that AaCV1-QY2 virus belonged to the genus Betachrysovirus and AaMV1 virus belonged to the genus Magoulvirus. These two mycoviruses were found to be associated with hypovirulence in A. alternata, among which AaCV1-QY2 might play a relatively leading role. Because the elimination of AaMV1 from the strain QY21 does not affect the hypovirulence trait, which indicates that the virus AaCV1-QY2 can independently induce slow growth and reduce host virulence. Moreover, the presence of viruses decreased the accumulation of the mycotoxin alternariol (AOH) in A. alternata strains. Intriguingly, AaCV1-QY2/AaMV1 mycoviruses can be horizontally transmitted to other A. alternata strains, and this coinfection can promote the interspecific transmission efficiency of AaCV1-QY2. To our knowledge, this study reports the first description of the member of Chrysovirus is related to hypovirulence in Alternaria spp. that facilitates the development of biocontrol measures of A. mali Roberts.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yuhan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zixuan Ji
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jingyi Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xianglong Meng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Pengbo Dai
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Keqiang Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|