1
|
Einsiedler M, Gulder TAM. Discovery of extended product structural space of the fungal dioxygenase AsqJ. Nat Commun 2023; 14:3658. [PMID: 37339975 DOI: 10.1038/s41467-023-39111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/25/2023] [Indexed: 06/22/2023] Open
Abstract
The fungal dioxygenase AsqJ catalyses the conversion of benzo[1,4]diazepine-2,5-diones into quinolone antibiotics. A second, alternative reaction pathway leads to a different biomedically important product class, the quinazolinones. Within this work, we explore the catalytic promiscuity of AsqJ by screening its activity across a broad range of functionalized substrates made accessible by solid-/liquid-phase peptide synthetic routes. These systematic investigations map the substrate tolerance of AsqJ within its two established pathways, revealing significant promiscuity, especially in the quinolone pathway. Most importantly, two further reactivities leading to new AsqJ product classes are discovered, thus significantly expanding the structural space accessible by this biosynthetic enzyme. Switching AsqJ product selectivity is achieved by subtle structural changes on the substrate, revealing a remarkable substrate-controlled product selectivity in enzyme catalysis. Our work paves the way for the biocatalytic synthesis of diverse biomedically important heterocyclic structural frameworks.
Collapse
Affiliation(s)
- Manuel Einsiedler
- Chair of Technical Biochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Natural Product Biotechnology, Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.
| |
Collapse
|
2
|
Einsiedler M, Jamieson CS, Maskeri MA, Houk KN, Gulder TAM. Fungal Dioxygenase AsqJ Is Promiscuous and Bimodal: Substrate-Directed Formation of Quinolones versus Quinazolinones. Angew Chem Int Ed Engl 2021; 60:8297-8302. [PMID: 33411393 PMCID: PMC8049060 DOI: 10.1002/anie.202017086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 11/10/2022]
Abstract
Previous studies showed that the FeII/α‐ketoglutarate dependent dioxygenase AsqJ induces a skeletal rearrangement in viridicatin biosynthesis in Aspergillus nidulans, generating a quinolone scaffold from benzo[1,4]diazepine‐2,5‐dione substrates. We report that AsqJ catalyzes an additional, entirely different reaction, simply by a change in substituent in the benzodiazepinedione substrate. This new mechanism is established by substrate screening, application of functional probes, and computational analysis. AsqJ excises H2CO from the heterocyclic ring structure of suitable benzo[1,4]diazepine‐2,5‐dione substrates to generate quinazolinones. This novel AsqJ catalysis pathway is governed by a single substituent within the complex substrate. This unique substrate‐directed reactivity of AsqJ enables the targeted biocatalytic generation of either quinolones or quinazolinones, two alkaloid frameworks of exceptional biomedical relevance.
Collapse
Affiliation(s)
- Manuel Einsiedler
- Department of Chemistry and Food Chemistry, Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095-1569, USA
| | - Mark A Maskeri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095-1569, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095-1569, USA
| | - Tobias A M Gulder
- Department of Chemistry and Food Chemistry, Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069, Dresden, Germany
| |
Collapse
|
3
|
Einsiedler M, Jamieson CS, Maskeri MA, Houk KN, Gulder TAM. Fungal Dioxygenase AsqJ Is Promiscuous and Bimodal: Substrate‐Directed Formation of Quinolones versus Quinazolinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Manuel Einsiedler
- Department of Chemistry and Food Chemistry Chair of Technical Biochemistry Technical University of Dresden Bergstraße 66 01069 Dresden Germany
| | - Cooper S. Jamieson
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095-1569 USA
| | - Mark A. Maskeri
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095-1569 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095-1569 USA
| | - Tobias A. M. Gulder
- Department of Chemistry and Food Chemistry Chair of Technical Biochemistry Technical University of Dresden Bergstraße 66 01069 Dresden Germany
| |
Collapse
|
5
|
Clevenger KD, Bok JW, Ye R, Miley GP, Verdan MH, Velk T, Chen C, Yang K, Robey MT, Gao P, Lamprecht M, Thomas PM, Islam MN, Palmer JM, Wu CC, Keller NP, Kelleher NL. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 2017; 13:895-901. [PMID: 28604695 PMCID: PMC5577364 DOI: 10.1038/nchembio.2408] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/13/2017] [Indexed: 12/02/2022]
Abstract
The genomes of filamentous fungi contain up to 90 biosynthetic gene clusters (BGCs) encoding diverse secondary metabolites-an enormous reservoir of untapped chemical potential. However, the recalcitrant genetics, cryptic expression, and unculturability of these fungi prevent scientists from systematically exploiting these gene clusters and harvesting their products. As heterologous expression of fungal BGCs is largely limited to the expression of single or partial clusters, we established a scalable process for the expression of large numbers of full-length gene clusters, called FAC-MS. Using fungal artificial chromosomes (FACs) and metabolomic scoring (MS), we screened 56 secondary metabolite BGCs from diverse fungal species for expression in Aspergillus nidulans. We discovered 15 new metabolites and assigned them with confidence to their BGCs. Using the FAC-MS platform, we extensively characterized a new macrolactone, valactamide A, and its hybrid nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS). The ability to regularize access to fungal secondary metabolites at an unprecedented scale stands to revitalize drug discovery platforms with renewable sources of natural products.
Collapse
Affiliation(s)
- Kenneth D Clevenger
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rosa Ye
- Intact Genomics, Inc., St. Louis, Missouri, USA
| | - Galen P Miley
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Maria H Verdan
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Thomas Velk
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - KaHoua Yang
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T Robey
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Peng Gao
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | | | - Paul M Thomas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | | | - Jonathan M Palmer
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, Wisconsin, USA
| | | | - Nancy P Keller
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
7
|
Bräuer A, Beck P, Hintermann L, Groll M. Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One-Pot Multistep Quinolone Antibiotic Biosynthesis. Angew Chem Int Ed Engl 2015; 55:422-6. [PMID: 26553478 DOI: 10.1002/anie.201507835] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/05/2015] [Indexed: 12/25/2022]
Abstract
Multienzymatic cascades are responsible for the biosynthesis of natural products and represent a source of inspiration for synthetic chemists. The Fe(II)/α-ketoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans is outstanding because it stereoselectively catalyzes both a ferryl-induced desaturation reaction and epoxidation on a benzodiazepinedione. Interestingly, the enzymatically formed spiro epoxide spring-loads the 6,7-bicyclic skeleton for non-enzymatic rearrangement into the 6,6-bicyclic scaffold of the quinolone alkaloid 4'-methoxyviridicatin. Herein, we report different crystal structures of the protein in the absence and presence of synthesized substrates, surrogates, and intermediates that mimic the various stages of the reaction cycle of this exceptional dioxygenase.
Collapse
Affiliation(s)
- Alois Bräuer
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching (Germany)
| | - Philipp Beck
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching (Germany)
| | - Lukas Hintermann
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching (Germany).
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching (Germany).
| |
Collapse
|