1
|
A Comparison of Different Reagents Applicable for Destroying Halogenated Anionic Textile Dye Mordant Blue 9 in Polluted Aqueous Streams. Catalysts 2023. [DOI: 10.3390/catal13030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
This article aimed to compare the degradation efficiencies of different reactants applicable for the oxidative or reductive degradation of a chlorinated anionic azo dye, Mordant Blue 9 (MB9). In this article, the broadly applied Fenton oxidation process was optimized for the oxidative treatment of MB9, and the obtained results were compared with other innovative chemical reduction methods. In the reductive degradation of MB9, we compared the efficiencies of different reductive agents such as Fe0 (ZVI), Al0, the Raney Al-Ni alloy, NaBH4, NaBH4/Na2S2O5, and other combinations of these reductants. The reductive methods aimed to reduce the azo bond together with the bound chlorine in the structure of MB9. The dechlorination of MB9 produces non-chlorinated aminophenols, which are more easily biodegradable in wastewater treatment plants (WWTPs) compared to their corresponding chlorinated aromatic compounds. The efficiencies of both the oxidative and reductive degradation processes were monitored by visible spectroscopy and determined based on the chemical oxygen demand (COD). The hydrodechlorination of MB9 to non-chlorinated products was expressed using the measurement of adsorbable organically bound halogens (AOXs) and controlled by LC–MS analyses. Optimally, 28 mol of H2SO4, 120 mol of H2O2, and 4 mol of FeSO4 should be applied per one mol of dissolved MB9 dye for a practically complete oxidative degradation after 20 h of action. On the other hand, the application of the Al-Ni alloy/NaOH (100 mol of Al in the Al-Ni alloy + 100 mol of NaOH per one mol of MB9) proceeded smoothly and seven-times faster than the Fenton reaction, consumed similar quantities of reagents, and produced dechlorinated aminophenols. The cost of the Al-Ni alloy/NaOH-based method could be decreased significantly by applying a pretreatment with Al0/NaOH and a subsequent hydrodechlorination using smaller Al-Ni alloy doses. The homogeneous reduction accompanied by HDC using in situ produced Na2S2O4 (by the action of NaBH4/Na2S2O5) was an effective, rapid, and simple treatment method. This reductive system consumed quantities of reagents that are almost twice as low (66 mol of NaBH4 + 66 mol of Na2S2O5 + 18 mol of H2SO4 per one mol of MB9) in comparison with the other oxidative/reductive systems and allowed the effective and fast degradation of MB9 accompanied by the effective removal of AOX. A comparison of the oxidative and reductive methods for chlorinated acid azo dye MB9 degradation showed that an innovative combination of reduction methods offers a smooth, simple, and efficient degradation and hydrodehalogenation of chlorinated textile MB9 dye.
Collapse
|
2
|
Copper-Catalyzed Reactions of Aryl Halides with N-nucleophiles and Their Possible Application for Degradation of Halogenated Aromatic Contaminants. Catalysts 2022. [DOI: 10.3390/catal12080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review summarizes recent applications of copper or copper-based compounds as a nonprecious metal catalyst in N-nucleophiles-based dehalogenation (DH) reactions of halogenated aromatic compounds (Ar-Xs). Cu-catalyzed DH enables the production of corresponding nonhalogenated aromatic products (Ar-Nu), which are much more biodegradable and can be mineralized during aerobic wastewater treatment or which are principally further applicable. Based on available knowledge, the developed Cu-based DH methods enable the utilization of amines for effective cleavage of aryl-halogen bonds in organic solvents or even in an aqueous solution.
Collapse
|
3
|
Bendová H, Kamenická B, Weidlich T, Beneš L, Vlček M, Lacina P, Švec P. Application of Raney Al-Ni Alloy for Simple Hydrodehalogenation of Diclofenac and Other Halogenated Biocidal Contaminants in Alkaline Aqueous Solution under Ambient Conditions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3939. [PMID: 35683235 PMCID: PMC9182476 DOI: 10.3390/ma15113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Raney Al-Ni contains 62% of Ni2Al3 and 38% NiAl3 crystalline phases. Its applicability has been studied within an effective hydrodehalogenation of hardly biodegradable anti-inflammatory drug diclofenac in model aqueous concentrates and, subsequently, even in real hospital wastewater with the aim of transforming them into easily biodegradable products. In model aqueous solution, complete hydrodechlorination of 2 mM aqueous diclofenac solution (0.59 g L-1) yielding the 2-anilinophenylacetate was achieved in less than 50 min at room temperature and ambient pressure using only 9.7 g L-1 of KOH and 1.65 g L-1 of Raney Al-Ni alloy. The dissolving of Al during the hydrodehalogenation process is accompanied by complete consumption of NiAl3 crystalline phase and partial depletion of Ni2Al3. A comparison of the hydrodehalogenation ability of a mixture of diclofenac and other widely used halogenated aromatic or heterocyclic biocides in model aqueous solution using Al-Ni was performed to verify the high hydrodehalogenation activity for each of the used halogenated contaminants. Remarkably, the robustness of Al-Ni-based hydrodehalogenation was demonstrated even for the removal of non-biodegradable diclofenac in real hospital wastewater with high chloride and nitrate content. After removal of the insoluble part of the Al-Ni for subsequent hydrometallurgical recycling, the low quantity of residual Ni was removed together with insoluble Al(OH)3 obtained after neutralization of aqueous filtrate by filtration.
Collapse
Affiliation(s)
- Helena Bendová
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Barbora Kamenická
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Tomáš Weidlich
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Ludvík Beneš
- Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (L.B.); (M.V.)
| | - Milan Vlček
- Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (L.B.); (M.V.)
| | - Petr Lacina
- GEOtest, a.s., Šmahova 1244/112, 627 00 Brno, Czech Republic;
| | - Petr Švec
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| |
Collapse
|
4
|
Abstract
The catalytic effect of copper in Devarda’s Al-Cu-Zn alloy (Dev. alloy) and sole metallic copper, copper salts and copper oxides in the coaction of NaBH4 within the hydrodehalogenation (HDH) of polybrominated phenols, such as the herbicide Bromoxynil in alkaline aqueous solution has been investigated. Namely, the hydrodebromination (HDB) activity of Dev. alloy/NaOH system has been compared to heterogeneous Cu-based catalysts using NaBH4 as a reductant. Differences in the solid-state structures of used Cu-based heterogeneous catalysts after the mentioned HDB process have been studied using the powder XRD and SEM techniques. It was found that some of the used copper-based catalysts are reusable and reasonably effective even at room temperature. Efficiency of the most promising copper-based reduction systems (Dev. alloy/NaOH and Cu-based catalysts/NaBH4) have been successfully tested within the HDB of industrially important brominated flame retardant tetrabromobisphenol A (TBBPA). Dev. alloy/NaOH and Cu-based catalyst generated in-situ within the CuSO4/NaBH4 produced were recognized as the most active HDB agents for complete debromination of both BRX and TBBPA.
Collapse
|
5
|
The Influence of Copper on Halogenation/Dehalogenation Reactions of Aromatic Compounds and Its Role in the Destruction of Polyhalogenated Aromatic Contaminants. Catalysts 2021. [DOI: 10.3390/catal11030378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The effect of copper and its compounds on halogenation and dehalogenation of aromatic compounds will be discussed in the proposed article. Cu oxidized to appropriate halides is an effective halogenation catalyst not only for the synthesis of halogenated benzenes or their derivatives as desired organic fine chemicals, but is also an effective catalyst for the undesirable formation of thermodynamically stable and very toxic polychlorinated and polybrominated aromatic compounds such as polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans accompanied incineration of waste contaminated with halogenated compounds or even inorganic halides. With appropriate change in reaction conditions, copper and its alloys or oxides are also able to effectively catalyze dehalogenation reactions, as will be presented in this review.
Collapse
|
6
|
Wang W, Wang K, Xu L, Li Y, Niu J. Raney nickel coupled nascent hydrogen as a novel strategy for enhanced reduction of nitrate and nitrite. CHEMOSPHERE 2021; 263:128187. [PMID: 33297153 DOI: 10.1016/j.chemosphere.2020.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
Raney nickel (R-Ni) is a cost-effective hydrogenation catalyst, and nascent hydrogen (Nas-H2) generated in situ on the cathode trends to more reactive than commercial hydrogen (Com-H2). In the present work, nitrate and nitrite (NOX-) reduction via R-Ni/Nas-H2 catalytic system was investigated. The results show that hydrogenation of NOX- (C0 = 3.0 mM) follows pseudo-first-order reaction kinetics with kinetic constants of 5.18 × 10-2 min-1 (NO3-) and 6.46 × 10-2 min-1 (NO2-). The saturation demand for Nas-H2 is only 0.8 mL min-1 at a fixed R-Ni dosage of 1.0 g L-1. The experiments reveal that both Nas-H2 and hydrogen adatoms (Hads∗) can drive the reduction of NOX-. The improved reduction ratios of NOX- are attributed to two aspects: (1) the micro/nano-sized Nas-H2 bubbles exhibits increased reactivity due to the fine dispersion of the hydrogen molecules; (2) the alkaline environment formed by the cathode positively maintain R-Ni activity, thus, Nas-H2 bubbles were more readily activated to generate powerful Hads∗. The results give insight into NOX- hydrogenation via introducing fine hydrogen resource, and can develop an efficient catalytic hydrogenation technique without noble metals.
Collapse
Affiliation(s)
- Weilai Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, People's Republic of China
| | - Kaixuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Lei Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, People's Republic of China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, People's Republic of China.
| |
Collapse
|
7
|
Hydrodechlorination of Different Chloroaromatic Compounds at Room Temperature and Ambient Pressure—Differences in Reactivity of Cu- and Ni-Based Al Alloys in an Alkaline Aqueous Solution. Catalysts 2020. [DOI: 10.3390/catal10090994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well known that the hydrodechlorination (HDC) of chlorinated aromatic contaminants in aqueous effluents enables a significant increase in biodegradability. HDC consumes a low quantity of reactants producing corresponding non-chlorinated and much more biodegradable organic compounds. Two commonly used precious metals free Al alloys (Raney Al-Ni and Devarda’s Al-Cu-Zn) were compared in reductive action in an alkaline aqueous solution. Raney Al-Ni alloy was examined as a universal and extremely effective HDC agent in a diluted aqueous NaOH solution. The robustness of Raney Al-Ni activity is illustrated in the case of HDC of polychlorinated aromatic compounds mixture in actual waste water. In contrast, Devarda’s Al-Cu-Zn alloy was approved as much less active for HDC of the tested chlorinated aromatic compounds, but with a surprisingly high selectivity on cleavage of C-Cl bonds in the meta and sometimes the ortho position in chlorinated aniline and sometimes chlorinated phenol structures. The reaction of both tested alloys with chlorinated aromatic compounds in the aqueous NaOH solution is accompanied by dissolution of aluminum. Dissolved Al in the alkaline HDC reaction mixture is very useful for subsequent treatment of HDC products by coagulation and flocculation of Al(OH)3 caused by simple neutralization of the alkaline aqueous phase after the HDC reaction.
Collapse
|
8
|
Wang W, Niu J, Yang Z. An efficient reduction of unsaturated bonds and halogen-containing groups by nascent hydrogen over Raney Ni catalyst. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121912. [PMID: 31874759 DOI: 10.1016/j.jhazmat.2019.121912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Presence of unsaturated bonds and halogen-containing groups is the most common characteristic of toxic and harmful environmental pollutants. Herein, catalytic hydrogenation was chosen as a water quality control method for such contaminants. Considering the safety, availability and activity of the hydrogen source, electrochemical in situ hydrogen generation was introduced. Under the combined action of Raney Ni (R-Ni) and nascent hydrogen (Nas-H2), three compounds (50 mg L-1, 90 ml), i.e., acrylamide, 2, 6-dibromo-4-nitrophenol and 2-chloro-4-fluorobenzonitrile achieved complete hydrogenation reduction in a short time. The improved system realized the quantitative consumption of hydrogen source and the efficient operation of hydrogenation reaction under mild conditions. Additionally, the alkaline environment formed by hydrogen evolution reaction (HER) avoided secondary pollution caused by catalyst dissolution. Atomic hydrogen (H·) produced from R-Ni and Nas-H2 was the active free radical of the reaction. The hydrogenation activities of different functional groups were obtained according to the following order: Ph-NO2 > -C = C- > Ph-C≡N > Ph-Br > Ph-Cl > Ph-F. This work indicates that the catalytic hydrogenation system consisting of R-Ni and Nas-H2 is a promising technology to reduce unsaturated bonds and halogen-containing groups.
Collapse
Affiliation(s)
- Weilai Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China.
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
9
|
Pérko J, Kamenická B, Weidlich T. Degradation of the antibacterial agents triclosan and chlorophene using hydrodechlorination by Al-based alloys. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2230-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Weidlich T, Opršal J, Krejčová A, Jašúrek B. Effect of glucose on lowering Al–Ni alloy consumption in dehalogenation of halogenoanilines. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1344-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|