1
|
Durmaz Ş, Evren AE, Sağlık BN, Yurttaş L, Tay NF. Synthesis, anticholinesterase activity, molecular docking, and molecular dynamic simulation studies of 1,3,4-oxadiazole derivatives. Arch Pharm (Weinheim) 2022; 355:e2200294. [PMID: 35972839 DOI: 10.1002/ardp.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Two new series of 1,3,4-oxadiazoles bearing pyridine and thiazole heterocycles (4a-h and 5a-h) were synthesized (2,5-disubstituted-1,3,4-oxadiazoles). The structures of these newly synthesized compounds were confirmed by 1 H nuclear magnetic resonance (NMR), 13 C NMR, high-resolution mass spectrometric and Fourier transform infrared spectroscopic methods. All these compounds were evaluated for their enzyme inhibitory activities against two cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). From the studies, we identified compounds 4a, 4h, 5a, 5d, and 5e as selective AChE inhibitors, with IC50 values ranging from 0.023 to 0.037 μM. Furthermore, docking studies of these compounds were performed at the active sites of their target enzymes. The molecular docking study showed that 5e possessed an ideal docking pose with interactions inside AChE.
Collapse
Affiliation(s)
- Şeyma Durmaz
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Asaf E Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Begüm N Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Naime F Tay
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
2
|
Helmy MT, Sroor FM, Mahrous KF, Mahmoud K, Hassaneen HM, Saleh FM, Abdelhamid IA, Mohamed Teleb MA. Anticancer activity of novel 3-(furan-2-yl)pyrazolyl and 3-(thiophen-2-yl)pyrazolyl hybrid chalcones: Synthesis and in vitro studies. Arch Pharm (Weinheim) 2021; 355:e2100381. [PMID: 34939695 DOI: 10.1002/ardp.202100381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
Twelve novel chalcone derivatives were prepared using the Claisen-Schmidt condensation reaction. The reaction of 4-acetyl-5-furan/thiophene-pyrazole derivatives 5 with the corresponding aldehydes 6 afforded the targeted chalcone derivatives 7a-l in good yields. The newly synthesized chalcones were fully characterized by spectrometric and elemental analyses. The in vitro anticancer activities of the novel compounds 7a-l were evaluated against four human cancer cell lines: HepG2 (human hepatocellular carcinoma), MCF7 (human Caucasian breast adenocarcinoma), A549 (lung carcinoma), and BJ1 (normal skin fibroblasts). Compound 7g emerged as the most promising compound, with IC50 = 27.7 µg/ml against A549 cells compared to the reference drug doxorubicin (IC50 = 28.3 µg/ml), and IC50 = 26.6 µg/ml against HepG2 cells compared to the reference drug doxorubicin (IC50 = 21.6 µg/ml). The gene expression and DNA damage values and the DNA fragmentation percentages for compound 7g were determined on the lung and liver cell lines. The expression levels of the AMY2A and FOXG1 genes increased significantly (p < 0.01) in the negative samples of lung cancer cells compared with treated cells. Also, the expression values of the PKM and PSPH genes improved significantly (p < 0.01) in the negative samples compared with treated samples of liver cancer cells. The DNA damage values increased significantly (p < 0.01) in treated lung cell line samples (7g) and the positive control. The results showed a significant decrease (p < 0.05) in DNA damage values in the negative samples of liver cancer cells compared to those treated with 7g. However, the DNA fragmentation values increased significantly (p < 0.01) in the treated lung and liver cell line samples compared with the negative control.
Collapse
Affiliation(s)
- Mirna T Helmy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt.,Institut für Anorganische Chemie, Universität Göttingen, Göttingen, Germany
| | | | - Khaled Mahmoud
- Pharmacognosy Department, National Research Centre, Dokki, Egypt
| | - Hamdi M Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma M Saleh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | | | | |
Collapse
|
3
|
Ren B, Liu RC, Ji K, Tang JJ, Gao JM. Design, synthesis and in vitro antitumor evaluation of novel pyrazole-benzimidazole derivatives. Bioorg Med Chem Lett 2021; 43:128097. [PMID: 33979690 DOI: 10.1016/j.bmcl.2021.128097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
A series of novel pyrazole-benzimidazole derivatives (6-42) have been designed, synthesized and evaluated for their in vitro antiproliferative activity against the HCT116, MCF-7 and Huh-7 cell lines. Among them, compounds 17, 26 and 35 showed significant antiproliferative activity against HCT116 cell lines with the IC50 values of 4.33, 5.15 and 4.84 μM, respectively. Moreover, fluorescent staining studies showed compound 17 could induce cancer cells apoptosis. The flow cytometry assay revealed that compound 17 could induce cell cycle arrest at G0/G1 phase. All in all, these consequences suggest that pyrazole-benzimidazole derivatives could serve as promising compounds for further research to develop novel and highly potent cancer therapy agents.
Collapse
Affiliation(s)
- Bo Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Rong-Chun Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Kegong Ji
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| |
Collapse
|
4
|
Khanam R, Hejazi II, Shahabuddin S, Bhat AR, Athar F. Pharmacokinetic evaluation, molecular docking and in vitro biological evaluation of 1, 3, 4-oxadiazole derivatives as potent antioxidants and STAT3 inhibitors. J Pharm Anal 2018; 9:133-141. [PMID: 31011470 PMCID: PMC6460303 DOI: 10.1016/j.jpha.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
1, 3, 4-Oxadiazole derivatives (4a–5f) were previously synthesized to investigate their anticancer properties. However, studies relating to their antioxidant potential and signal transducer and activator of transcription (STAT) inhibition have not been performed. We investigated previously synthesized 1, 3, 4-oxadiazole derivatives (4a–5f) for various radical scavenging properties using several in vitro antioxidant assays and also for direct inhibition of STAT3 through molecular docking. The data obtained from various antioxidant assays such as 2, 2,-diphenyl-1-picrylhydrazyl radical (DPPH), nitric oxide, hydrogen peroxide, and superoxide anion radical revealed that among all the derivatives, compound 5e displayed high antioxidant activities than the standard antioxidant L-ascorbic acid. Additionally, the total reduction assay and antioxidant capacity assay further confirmed the antioxidant potential of compound 5e. Furthermore, the molecular docking studies performed for all derivatives along with the standard inhibitor STX-0119 showed that binding energy released in direct binding with the SH2 domain of STAT3 was the highest for compound 5e (-9.91kcal/mol). Through virtual screening, compound 5e was found to exhibit optimum competency in inhibiting STAT3 activity. Compound 5e decreased the activation of STAT3 as observed with Western blot. In brief, compound 5e was identified as a potent antioxidant agent and STAT3 inhibitor and effective agent for cancer treatment.
Collapse
Affiliation(s)
- Rashmin Khanam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Iram I Hejazi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Shahabuddin
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| | - Abdul R Bhat
- Department of Chemistry, Sri Pratap College, Cluster University, Srinagar 190001, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
5
|
Mihailović N, Marković V, Matić IZ, Stanisavljević NS, Jovanović ŽS, Trifunović S, Joksović L. Synthesis and antioxidant activity of 1,3,4-oxadiazoles and their diacylhydrazine precursors derived from phenolic acids. RSC Adv 2017. [DOI: 10.1039/c6ra28787e] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eight 1,3,4-oxadiazoles and eight of their diacylhydrazine precursors were synthesized and examined for their antioxidative potential using different tests.
Collapse
Affiliation(s)
- Nevena Mihailović
- Faculty of Science
- Department of Chemistry
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| | - Violeta Marković
- Faculty of Science
- Department of Chemistry
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| | - Ivana Z. Matić
- Institute of Oncology and Radiology of Serbia
- 11000 Belgrade
- Serbia
| | | | - Živko S. Jovanović
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | | | - Ljubinka Joksović
- Faculty of Science
- Department of Chemistry
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| |
Collapse
|
6
|
Synthesis and pharmacological evaluation of some new fluorine containing hydroxypyrazolines as potential anticancer and antioxidant agents. Eur J Med Chem 2015; 104:25-32. [PMID: 26433616 DOI: 10.1016/j.ejmech.2015.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 11/23/2022]
|