1
|
Heptacoordinated lanthanide(III) complexes based on 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine ligands (bbp, bmbp and bdmbp): Computational calculations, luminescent properties and cytotoxic evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
2
|
Obydennov DL, Simbirtseva AE, Piksin SE, Sosnovskikh VY. 2,6-Dicyano-4-pyrone as a Novel and Multifarious Building Block for the Synthesis of 2,6-Bis(hetaryl)-4-pyrones and 2,6-Bis(hetaryl)-4-pyridinols. ACS OMEGA 2020; 5:33406-33420. [PMID: 33403303 PMCID: PMC7774280 DOI: 10.1021/acsomega.0c05357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 05/08/2023]
Abstract
In this work, a three-stage and easily scalable synthesis of 2,6-dicyano-4-pyrone (overall yield of 45%) as a new convenient building block has been developed from diethyl acetonedioxalate. It was shown that the transformation with hydroxylamine and [3 + 2]-cycloaddition, in contrast to the reactions with hydrazines, selectively proceed through the attack at the cyano groups without the pyrone ring-opening to give symmetrical and unsymmetrical pyrone-bearing heterocyclic triads containing 1,2,4- and 1,3,4-oxadiazoles as well as tetrazole moieties. The reaction of 2,6-bis(hetaryl)-4-pyrones with ammonia afforded 2,6-bis(hetaryl)pyridines in 63-87% yields. The 4-pyridone/4-pyridinol tautomerism of 2,6-bis(hetaryl)pyridinols and the influence of the nature of adjacent azolyl moieties on this equilibrium have been discussed.
Collapse
|
3
|
Xia X, Xia L, Zhang G, Xu J, Wang C, Wu Y, Zhao K, Wu H. Preparation, structure and antioxidant property of manganese(II) and zinc(II) complexes with bis(N-ethylbenzimidazol-2-ylmethyl)allylamine. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1857746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xinzhao Xia
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People’s Republic of China
| | - Lixian Xia
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People’s Republic of China
| | - Geng Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People’s Republic of China
| | - Jianhua Xu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People’s Republic of China
| | - Cong Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People’s Republic of China
| | - Yancong Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People’s Republic of China
| | - Kun Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People’s Republic of China
| | - Huilu Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
4
|
Czylkowska A, Drozd M, Biernasiuk A, Rogalewicz B, Malm A, Pitucha M. Synthesis, Spectral, Thermal and Biological Studies of 4-Cyclohexyl-3-(4-nitrophenyl)methyl-1,2,4-triazolin-5-thione and Its Copper(II) Coordination Compound, [CuCl 2(H 2O) 2L 2]. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4135. [PMID: 32957575 PMCID: PMC7560296 DOI: 10.3390/ma13184135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022]
Abstract
One of the strategies for seeking new biologically active substances is to modify compounds with potential biological activity. In this paper, 1,2,4-triazolin-5-thione derivative (3) was obtained in the cyclization reaction of appropriate thiosemicarbazide (2) as an organic ligand. The copper(II) complex, [CuCl2(H2O)2L2] (L=4-cyclohexyl-3-(nitrophenyl)methyl-1,2,4-triazolin-5-thione) (Cu-3) was prepared in a reaction of free ligand (3) with a CuCl2·2H2O solution in MeOH/EtOH mixture at room temperature. TGA data show that Cu-3 and free ligand are stable at room temperature. Both compounds were screened in vitro for antibacterial and antifungal activities using the broth microdilution method. The obtained complex (Cu-3) showed higher antibacterial effect, especially towards Gram-positive bacteria (with moderate activity and Minimal Inhibitory Concentration MIC = 250-500 µg/mL) than the free ligand (3) (with mild or no bioactivity and MIC ≥ 1000 µg/mL). In turn, yeasts, belonging to Candida albicans, exhibited similar sensitivity to both the copper(II) complex (Cu-3) and the organic ligand (3). The anticandidal activity of these compounds was moderate (MIC = 500 µg/mL), or, in the case of other Candida spp., lower (MIC ≥ 1000 µg/mL).
Collapse
Affiliation(s)
- Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Monika Drozd
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland; (M.D.); (M.P.)
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology with the Laboratory of Microbiological Diagnostics, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Bartłomiej Rogalewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Anna Malm
- Department of Pharmaceutical Microbiology with the Laboratory of Microbiological Diagnostics, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland; (M.D.); (M.P.)
| |
Collapse
|
5
|
Hajji R, Hajji S, Ben Ahmed A, Nasri M, Hlel F. Synthesis, physical characterization, thermal studies, biological activities and DFT computations on the molecular structure and vibrational spectra of [C7H12N2]2Bi2Br10·4H2O compound. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Synthesis, structure and antioxidant properties of manganese(II), zinc(II) and cobalt(II) complexes with bis(benzimidazol-2-ylmethyl)allylamine. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00405-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Hirshfeld surface analysis, vibrational spectra, optical, DFT studies and biological activities of (C7H12N2)2[SnCl6]Cl2·1.5H2O compound. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.02.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Tabrizi L, Dao DQ, Vu TA. Experimental and theoretical evaluation on the antioxidant activity of a copper(ii) complex based on lidocaine and ibuprofen amide-phenanthroline agents. RSC Adv 2019; 9:3320-3335. [PMID: 35518981 PMCID: PMC9060296 DOI: 10.1039/c8ra09763a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/18/2019] [Indexed: 11/21/2022] Open
Abstract
A new copper(ii) complex, [Cu(LC)(Ibu-phen)(H2O)2](ClO4)2 (LC: lidocaine, Ibu-phen: ibuprofen amide-phenanthroline), was synthesized and characterized. The antioxidant activities of the free ligands and the copper(ii) complex were evaluated by in vitro experiments and theoretical calculations using density functional theory (DFT). Structures of the ligand Ibu-phen and the complex were identified by 1H and 13C NMR, FT-IR spectroscopies, mass spectrometry, thermogravimetric analysis and elemental analysis. The antioxidant potentials of LC and Ibu-phen ligands as well as copper(ii) complex were also evaluated by DPPH˙, ABTS˙+, HO˙ essays and EPR spectroscopy. The experimental results show that the radical scavenging activity (RSA) at various concentrations is decreased in the following order: copper(ii) complex > ascorbic acid > LC > Ibu-phen. Structural and electronic properties of the studied compounds were also analyzed by DFT approach at the M05-2X/6-311++g(2df,2p)//M05-2X/LanL2DZ level of theory. ESP maps and NPA charge distributions show that the highly negative charge regions found on the N and O heteroatoms make these sites more favorable to bind with the central copper ion. Frontier orbital distributions of copper(ii) complex indicate that HOMOs are mainly localized at Ibu-phen, while its LUMOs are distributed at LC. Based on natural bond orbitals (NBO) analyses, Cu(ii) ion plays as electron acceptor in binding with the two ligands and two water molecules. Thermochemical properties including bond dissociation enthalpy (BDE), ionization energy (IE), electron affinity (EA), proton affinity (PA) characterizing three common antioxidant mechanisms i.e. hydrogen transfer (HT), single electron transfer (SET) and proton loss (PL) were finally calculated in the gas phase and water solvent for two ligands and the copper(ii) complex at the same level of theory. As a result, the higher EA and lower BDE and PA values obtained for copper(ii) complex show that the complex shows higher antioxidant potential than the free ligands.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway University Road Galway H91 TK33 Ireland
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University 03 Quang Trung Da Nang 550000 Viet Nam
| | - Thuy An Vu
- Faculty of Environment and Chemical Engineering, Duy Tan University 03 Quang Trung Da Nang 550000 Viet Nam
| |
Collapse
|
9
|
Thatituri S, Govindugari B, Chittireddy VRR. Carboxylate-bridged Cu(II) coordination polymeric complex: synthesis, crystal structure, magnetic properties, DNA binding and electrochemical studies. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1330-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Pan RK, Song JL, Li GB, Lin SQ, Liu SG, Yang GZ. Copper(II), cobalt(II) and zinc(II) complexes based on a tridentate bis(benzimidazole)pyridine ligand: synthesis, crystal structures, electrochemical properties and antitumour activities. TRANSIT METAL CHEM 2017. [DOI: 10.1007/s11243-017-0129-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|