1
|
Kubíčková J, Elefantová K, Pavlikova L, Cagala M, Šereš M, Šafář P, Marchalín Š, Ďurišová K, Boháčová V, Sulova Z, Lakatoš B, Breier A, Olejníková P. Screening of Phenanthroquinolizidine Alkaloid Derivatives for Inducing Cell Death of L1210 Leukemia Cells with Negative and Positive P-glycoprotein Expression. Molecules 2019; 24:E2127. [PMID: 31195716 PMCID: PMC6600356 DOI: 10.3390/molecules24112127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/08/2023] Open
Abstract
We describe the screening of a set of cryptopleurine derivatives, namely thienoquinolizidine derivatives and (epi-)benzo analogs with bioactive phenanthroquinolizidine alkaloids that induce cytotoxic effects in the mouse lymphocytic leukemia cell line L1210. We used three variants of L1210 cells: i) parental cells (S) negative for P-glycoprotein (P-gp) expression; ii) P-glycoprotein positive cells (R), obtained by selection with vincristine; iii) P-glycoprotein positive cells (T), obtained by stable transfection with a human gene encoding P-glycoprotein. We identified the most effective derivative 11 with a median lethal concentration of ≈13 μM in all three L1210 cell variants. The analysis of the apoptosis/necrosis induced by derivative 11 revealed that cell death was the result of apoptosis with late apoptosis characteristics. Derivative 11 did not induce a strong alteration in the proportion of cells in the G1, S or G2/M phase of the cell cycle, but a strong increase in the number of S, R and T cells in the subG1 phase was detected. These findings indicated that we identified the most effective inducer of cell death, derivative 11, and this derivative effectively induced cell death in S, R and T cells at similar inhibitory concentrations independent of P-gp expression.
Collapse
Affiliation(s)
- Jana Kubíčková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Katarína Elefantová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Lucia Pavlikova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia.
| | - Martin Cagala
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia.
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia.
| | - Peter Šafář
- Institute of Organic chemistry, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Štefan Marchalín
- Institute of Organic chemistry, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Kamila Ďurišová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Viera Boháčová
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia.
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia.
| | - Boris Lakatoš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Albert Breier
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
2
|
Crystal, molecular and electronic structure of (5S,11R,11aS)-11-hydroxy-5-methyl-1,2,3,4,5,6,11,11a-octahydropyrido[1,2-b]isoquinolin-5-ium iodide. ACTA CHIMICA SLOVACA 2018. [DOI: 10.2478/acs-2018-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The title compound, C14H20INO, is a molecule with three stereogenic centres. It absolute configuration was derived from the synthesis and confirmed by structure determination (AD, Flack (Parsons’) parameter: 0.031 (8)). The expected stereochemistry of atoms N1 was confirmed to be S, C5 was confirmed to S, C6 was confirmed to R. The central N-heterocyclic ring is not planar and adopts a half-chair conformation. A calculation of least-squares planes showed that these rings are puckered in such a manner that the five atoms: C5, C6, C7, C12 and C13 (the second ring: C1, C2, C3, C4, C5 and N1) are planar, while atom N1 is displaced from these plane with the out-of-plane displacement of −0.694 (4) and −0.670 (5) Å in the second ring, respectively. Dihedral angle between the planes of the central N-heterocyclic rings is 23.4 (2)°. Crystal structure is also stabilized by C—H···O hydrogen interactions.
Collapse
|