Tanuhadi E, Al-Sayed E, Novitchi G, Roller A, Giester G, Rompel A. Cation-Directed Synthetic Strategy Using 4f Tungstoantimonates as Nonlacunary Precursors for the Generation of 3d-4f Clusters.
Inorg Chem 2020;
59:8461-8467. [PMID:
32442371 PMCID:
PMC7298720 DOI:
10.1021/acs.inorgchem.0c00890]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The first synthetic
pathway using a series of four nonlacunary
4f-heterometal-substituted polyoxotungstate clusters Na21[(Ln(H2O)(OH)2(CH3COO))3(WO4)(SbW9O33)3]·nH2O (NaLnSbW9; Ln = TbIII, DyIII, HoIII, ErIII, YIII) as precursors for the directed
preparation of nine new 3d–4f heterometallic tungstoantimonates
K5Na12H3[TM(H2O)Ln3(H2O)5(W3O11)(SbW9O33)3]·nH2O (KTMLnSbW9; TM = CoII, NiII; Ln = TbIII, DyIII, HoIII, ErIII, YIII) has been developed.
Systematic studies revealed an increased K content in the aqueous
acidic reaction mixture to be the key step in the cation-directed
preparation of 3d–4f compounds; among those, the Co-containing
members represent the first examples of KCoLnSbW9 (Ln = TbIII, DyIII, HoIII, ErIII, YIII) heterometallic tungstoantimonates
exhibiting the SbW9 building
block. All 13 compounds have been characterized thoroughly in the
solid state by powder and single-crystal X-ray diffraction (XRD),
revealing a cyclic trimeric polyoxometalate architecture with three SbW9 units encapsulating a planar
triangle of LnIII ions in the case of NaLnSbW9 and a heterometallic core of one TMII and three LnIII for KTMLnSbW9 (TM = CoII, NiII; Ln =
TbIII, DyIII, HoIII, ErIII, YIII). The results obtained by XRD are supplemented
by complementary characterization methods in the solid state such
as IR spectroscopy, thermogravimetric analysis, and elemental analysis
as well as in solution by UV–vis spectroscopy. Detailed magnetic
studies on the representative compounds KTMDySbW9 (TM = CoII, NiII) and KCoYSbW9 of the series revealed field-induced
slow magnetic relaxation.
The first step-by-step
synthetic protocol using preformed
4f tungstoantimonate clusters as nonlacunary precursors for the controlled
preparation and thorough characterization of a family of nine new
3d−4f heterometallic polyoxometalates [TM(H2O)Ln3(H2O)5(W3O11)(SbW9O33)3]20- (KTMLnSbW9) (TM = CoII, NiII; Ln = TbIII, DyIII, HoIII, ErIII, YIII) is reported. Magnetic studies on the
DyIII-containing representatives [TM(H2O)Dy3(H2O)5(W3O11)(SbW9O33)3]20− (TM = CoII, NiII) show single-molecule-magnet behavior.
Collapse