1
|
Electrophysiological experiments in microgravity: lessons learned and future challenges. NPJ Microgravity 2018; 4:7. [PMID: 29619409 PMCID: PMC5876337 DOI: 10.1038/s41526-018-0042-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 02/08/2023] Open
Abstract
Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying mechanisms.
Collapse
|
2
|
Masi E, Ciszak M, Comparini D, Monetti E, Pandolfi C, Azzarello E, Mugnai S, Baluška F, Mancuso S. The electrical network of maize root apex is gravity dependent. Sci Rep 2015; 5:7730. [PMID: 25588706 PMCID: PMC4295110 DOI: 10.1038/srep07730] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022] Open
Abstract
Investigations carried out on maize roots under microgravity and hypergravity revealed that gravity conditions have strong effects on the network of plant electrical activity. Both the duration of action potentials (APs) and their propagation velocities were significantly affected by gravity. Similarly to what was reported for animals, increased gravity forces speed-up APs and enhance synchronized electrical events also in plants. The root apex transition zone emerges as the most active, as well as the most sensitive, root region in this respect.
Collapse
Affiliation(s)
- Elisa Masi
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Marzena Ciszak
- 1] LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy [2] CNR, National Institute of Optics (INO), L.go E. Fermi 6, 50125 Florence, Italy
| | - Diego Comparini
- 1] LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy [2] LINV@Kitakyushu Research Center, University of Kitakyushu, 808-0135 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan
| | - Emanuela Monetti
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Camilla Pandolfi
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Elisa Azzarello
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Sergio Mugnai
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Frantisek Baluška
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Stefano Mancuso
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
3
|
Dayeh M, Ammar M, Al-Ghoul M. Transition from rings to spots in a precipitation reaction–diffusion system. RSC Adv 2014. [DOI: 10.1039/c4ra11223g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report for the first time the transition from rings to spots with squared/hexagonal symmetry in a periodic precipitation system, which consists of sulfide/hydroxide ions diffusing into a gel matrix containing dissolved cadmium(ii) ions.
Collapse
Affiliation(s)
- Malak Dayeh
- Department of Chemistry
- American University of Beirut
- Beirut, Lebanon
| | - Manal Ammar
- Department of Chemistry
- American University of Beirut
- Beirut, Lebanon
| | - Mazen Al-Ghoul
- Department of Chemistry
- American University of Beirut
- Beirut, Lebanon
| |
Collapse
|
4
|
Hanke W, de Lima VMF. Central nervous tissue: an excitable medium. a study using the retinal spreading depression as a tool. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:359-68. [PMID: 17673413 DOI: 10.1098/rsta.2007.2094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
According to its physicochemical properties, neuronal tissue, including the central nervous system (CNS) and thus the human brain, is an excitable medium, which consequently exhibits, among other things, self-organization, pattern formation and propagating waves. Furthermore, such systems can be controlled by weak external forces. The spreading depression (SD), a propagating wave of excitation-depression, is such an event, which is additionally linked to a variety of medically important situations, classical migraine being just one example. Especially in retinal tissue, a true part of the CNS, the SD can be observed very easily with the naked eye and by video imaging techniques due to its big intrinsic optical signal. We have investigated the retinal SD and its control by external physical parameters such as gravity and temperature. Beyond this, especially due to its medical relevance, the control of CNS excitability by pharmacological tools is of specific interest, and we have studied this question in detail using the retinal SD as an experimental tool to collect information about the control of CNS tissue excitability.
Collapse
Affiliation(s)
- Wolfgang Hanke
- University of Hohenheim, Institute of Physiology-230, Stuttgart 70599, Germany.
| | | |
Collapse
|