1
|
Yang J, Li B, Qin Y, Gao J, Zhang X, Yang X, Zhang G, Yan Y, Chen Y. Involvement of Programmed Cell Death and Autophagy on Schizogenous Secretory Canal Formation in Angelica dahurica var. formosana Root. Microsc Res Tech 2024. [PMID: 39400444 DOI: 10.1002/jemt.24711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Schizogenous secretory canal is an important functional structure of Angelica dahurica var. formosana, which is the main part of the accumulation of essential oil, coumarin and other components. The developmental process of secretory tissue and the accumulation of components are closely related. Meanwhile, programmed cell death (PCD) plays an important role in the development of plant secretory tissues, which is usually associated with autophagy. However, there are fewer studies involving PCD and autophagy with the development of schizogenous secretory canal. This study aims to provide new data on the development of schizogenous secretory canal in A. dahurica var. formosana. Light and transmission electron microscopy were used to reveal the cytological characteristics of secretory canal in A. dahurica var. formosana roots at different developmental stages. PCD and autophagy signals during the developmental process were detected using techniques such as terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) detection, propidium iodide (PI) staining, and immunofluorescent labeling. The results showed that the walls of secretory cells were intact during the development of schizogenous secretory canal in A. dahurica var. formosana roots. Mature secretory cells showed high vacuolization and accumulated a large number of essential oils. Meanwhile, we also observed significant ultrastructural features of PCD and autophagy during the developmental process. The signal detection results indicated that PCD and autophagy were jointly involved in the development of schizogenous secretory canal in A. dahurica var. formosana roots, and caspase-3-like protease may act as an upstream signal and participate in PCD.
Collapse
Affiliation(s)
- Jiahui Yang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Shaanxi Qinling Application, Development and Engineering, Center of Chinese Herbal Medicine, Xianyang, Shaanxi, China
| | - Boyuan Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Shaanxi Qinling Application, Development and Engineering, Center of Chinese Herbal Medicine, Xianyang, Shaanxi, China
| | - Yue Qin
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Shaanxi Qinling Application, Development and Engineering, Center of Chinese Herbal Medicine, Xianyang, Shaanxi, China
| | - Jing Gao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Shaanxi Qinling Application, Development and Engineering, Center of Chinese Herbal Medicine, Xianyang, Shaanxi, China
| | - Xiaofei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Shaanxi Qinling Application, Development and Engineering, Center of Chinese Herbal Medicine, Xianyang, Shaanxi, China
- Shaanxi Province Innovation Team of Aromatic Traditional Chinese Medicine Industrialization Key Technology, Xianyang, Shaanxi, China
- Research Center of Traditional, Chinese Medicine Aromatic Industry, Shaanxi University Engineering, Xianyang, Shaanxi, China
| | - Xinjie Yang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Shaanxi Qinling Application, Development and Engineering, Center of Chinese Herbal Medicine, Xianyang, Shaanxi, China
| | - Gang Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Shaanxi Qinling Application, Development and Engineering, Center of Chinese Herbal Medicine, Xianyang, Shaanxi, China
| | - Yonggang Yan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Shaanxi Qinling Application, Development and Engineering, Center of Chinese Herbal Medicine, Xianyang, Shaanxi, China
| | - Ying Chen
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Shaanxi Qinling Application, Development and Engineering, Center of Chinese Herbal Medicine, Xianyang, Shaanxi, China
- Shaanxi Province Innovation Team of Aromatic Traditional Chinese Medicine Industrialization Key Technology, Xianyang, Shaanxi, China
- Research Center of Traditional, Chinese Medicine Aromatic Industry, Shaanxi University Engineering, Xianyang, Shaanxi, China
| |
Collapse
|
2
|
Li G, Zhao Q, Shi X, Li B, Yang L, Wang Y, Zhou Y. Full-length RNA sequencing and single-nucleus sequencing deciphers programmed cell death and developmental trajectories in laticiferous canals of Decaisnea insignis fruits. FRONTIERS IN PLANT SCIENCE 2024; 15:1446561. [PMID: 39228829 PMCID: PMC11369900 DOI: 10.3389/fpls.2024.1446561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024]
Abstract
Introduction Programmed cell death (PCD) is a fundamental biological process crucial for plant development. Despite recent advancements in our understanding of PCD's molecular mechanisms, the intricate orchestration of this process within plant cells remains enigmatic. To address this knowledge gap, the present study focuses on Decaisnea insignis, a plant species renowned for its unique fruit anatomy, including laticiferous canals that secrete latex. While extensive anatomical studies have elucidated the structural features of these canals,molecular insights into their developmental regulation, particularly the involvement of PCD, are lacking. Methods In this study, we sequenced the single-cell transcriptomes at two developmental stage of Decaisnea insignis fruit using the technology known as 10x Genomics (S1, S2). Using sequencing technology combining full- length RNA sequencing and single-nucleus RNA sequencing (snRNA-seq) in combination with ultrastructural analyses, our study revealed a cellular map of Decaisnea insignis fruit at the single-cell level and identified different cell types. Results In particular, we identified a possible PCD-mediated cluster of Decaisnea insignis fruit lactiferous canals in epidermal cells and clarified the expression patterns of DiRD21A (a hydrolase) and DiLSD1 (a transcription factor), which may be closely related to the development of laticiferous canals in Decaisnea insignis fruits. Discussion By integrating high-resolution gene expression profiling with visual insights into cellular transformations, we sought to more precisely characterize the regulatory role of PCD during the developmental formation of lactiferous canals in Decaisnea insignis fruit.
Collapse
Affiliation(s)
- Gen Li
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi, Xi’an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
- Shaanxi Key Laboratory of Qinling Ecological Security, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
| | - Qian Zhao
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, China
| | - Xinwei Shi
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi, Xi’an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
- Shaanxi Key Laboratory of Qinling Ecological Security, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
| | - Bin Li
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi, Xi’an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
- Shaanxi Key Laboratory of Qinling Ecological Security, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
| | - Luyao Yang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi, Xi’an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
- Shaanxi Key Laboratory of Qinling Ecological Security, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
| | - Yanwen Wang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi, Xi’an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
- Shaanxi Key Laboratory of Qinling Ecological Security, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
| | - Yafu Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi, Xi’an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
- Shaanxi Key Laboratory of Qinling Ecological Security, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi), Xi’an, China
| |
Collapse
|
3
|
Zhou Y, Li G, Han G, Mao S, Yang L, Wang Y. Novel Mechanisms Underlying Rubber Accumulation and Programmed Cell Death in Laticiferous Canals of Decaisnea insignis Fruits: Cytological and Transcriptomic Analyses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3497. [PMID: 37836237 PMCID: PMC10575083 DOI: 10.3390/plants12193497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Natural rubber is one of the most important industrial raw materials, and its biosynthesis is still a fascinating process that is still largely unknown. In this research, we studied Decaisnea insignis, a unique rubber-producing plant that is different from other rubber-producing species due to the presence of lactiferous canals in its pericarp. The present study aims to provide novel insights into the mechanisms underlying rubber accumulation and PCD by subjecting the Decaisnea insignis laticiferous canals to light microscopy, TUNEL assay, and DAPI staining, as well as viability analysis, cellular ultrastructure analysis, and molecular analysis using light microscopy, scanning electron microscopy, immunofluorescence labeling, transmission electron microscopy, and transcriptome sequencing. At the cellular level, the origin of small rubber particles in the laticiferous canals had no morphological correlation with other organelles, and these particles were freely produced in the cytosol. The volume of the rubber particles increased at the sunken and expanding stage, which were identified as having the characteristics of programmed cell death (PCD); meanwhile, plenty of the rubber precursors or rubber particles were engulfed by the vacuoles, indicating a vacuole-mediated autophagy process. The accumulation of rubber particles occurred after the degeneration of protoplasts, suggesting a close association between rubber biosynthesis and PCD. The molecular analysis revealed the expression patterns of key genes involved in rubber biosynthesis. The upstream genes DiIPP, DiFPP, and DiGGPPS showed a decreasing trend during fruit ripening, while DiHRT, which is responsible for rubber particle extension, exhibited the highest expression level during the rubber particle formation. Moreover, the transcription factors related to PCD, DiLSD1, and DiLOL2 showed a negative correlation with the expression pattern of DiHRT, thus exhibiting strict rules of sequential expression during rubber biosynthesis. Additionally, the expression trends of DiXCP1 and DiCEP1, which act as proteases during PCD, were positively correlated with DiGGPPS expression. In conclusion, the findings suggest that the autophagic PCD may play a crucial role in rubber accumulation in D. insignis. Further research is still needed to fully understand the complex regulatory network underlying rubber biosynthesis in plants.
Collapse
Affiliation(s)
- Yafu Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China; (G.L.); (G.H.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Gen Li
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China; (G.L.); (G.H.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Guijun Han
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China; (G.L.); (G.H.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Shaoli Mao
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China; (G.L.); (G.H.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Luyao Yang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China; (G.L.); (G.H.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Yanwen Wang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China; (G.L.); (G.H.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| |
Collapse
|
4
|
Zhou Y, Li G, Han G, Xun L, Mao S, Yang L, Wang Y. Developmental Programmed Cell Death Involved in Ontogenesis of Dictamnus dasycarpus Capitate Glandular Hairs. PLANTS (BASEL, SWITZERLAND) 2023; 12:395. [PMID: 36679107 PMCID: PMC9863949 DOI: 10.3390/plants12020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Plant glandular trichomes have received much attention due to their commercial and biological value. Recent studies have focused on the development of various glands in plants, suggesting that programmed cell death (PCD) may play an important role during the development of plant secretory structures. However, the development processes and cytological characteristics in different types of plant secretory structures differed significantly. This study aims to provide new data on the developmental PCD of the capitate glandular hairs in Dictamnus dasycarpus. Light, scanning, immunofluorescence labeling, and transmission electron microscopy were used to determine the different developmental processes of the capitate glandular hairs from a cytological perspective. Morphologically, the capitate glandular hair originates from one initial epidermal cell and differentiates into a multicellular trichome characterized by two basal cells, two lines of stalk cells, and a multicellular head. It is also histochemically detected by essential oils. TUNEL-positive reactions identified nuclei with diffused fluorescence or an irregular figure by DAPI, and Evans blue staining showed that the head and stalk cells lost their viability. Ultrastructural evidence revealed the developmental process by two possible modes of PCD. Non-autolytic PCD was characterized by buckling cell walls and degenerated nuclei, mitochondria, plastids, multivesicular body (MVB), and end-expanded endoplasmic reticulum in the condensed cytoplasm, which were mainly observed in the head cells. The MVB was detected in the degraded vacuole, a degraded nucleus with condensed chromatin and diffused membrane, and eventual loss of the vacuole membrane integrity exhibited typical evidence of vacuole-mediated autolytic PCD in the stalk cells. Furthermore, protoplasm degeneration coupled with dark oil droplets and numerous micro-dark osmiophilic substances was observed during late stages. The secretion mode of essential oils is also described in this paper.
Collapse
Affiliation(s)
- Yafu Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Gen Li
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Guijun Han
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Lulu Xun
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Shaoli Mao
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Luyao Yang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Yanwen Wang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| |
Collapse
|
5
|
Mazur O, Bałdysz S, Warowicka A, Nawrot R. Tap the sap - investigation of latex-bearing plants in the search of potential anticancer biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2022; 13:979678. [PMID: 36388598 PMCID: PMC9664067 DOI: 10.3389/fpls.2022.979678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Latex-bearing plants have been in the research spotlight for the past couple of decades. Since ancient times their extracts have been used in folk medicine to treat various illnesses. Currently they serve as promising candidates for cancer treatment. Up to date there have been several in vitro and in vivo studies related to the topic of cytotoxicity and anticancer activity of extracts from latex-bearing plants towards various cell types. The number of clinical studies still remains scarce, however, over the years the number is systematically increasing. To the best of our knowledge, the scientific community is still lacking in a recent review summarizing the research on the topic of cytotoxicity and anticancer activity of latex-bearing plant extracts. Therefore, the aim of this paper is to review the current knowledge on in vitro and in vivo studies, which focus on the cytotoxicity and anticancer activities of latex-bearing plants. The vast majority of the studies are in vitro, however, the interest in this topic has resulted in the substantial growth of the number of in vivo studies, leading to a promising number of plant species whose latex can potentially be tested in clinical trials. The paper is divided into sections, each of them focuses on specific latex-bearing plant family representatives and their potential anticancer activity, which in some instances is comparable to that induced by commonly used therapeutics currently available on the market. The cytotoxic effect of the plant's crude latex, its fractions or isolated compounds, is analyzed, along with a study of cell apoptosis, chromatin condensation, DNA damage, changes in gene regulation and morphology changes, which can be observed in cell post plant extract addition. The in vivo studies go beyond the molecular level by showing significant reduction of the tumor growth and volume in animal models. Additionally, we present data regarding plant-mediated biosynthesis of nanoparticles, which is regarded as a new branch in plant latex research. It is solely based on the green-synthesis approach, which presents an interesting alternative to chemical-based nanoparticle synthesis. We have analyzed the cytotoxic effect of these particles on cells. Data regarding the cytotoxicity of such particles raises their potential to be involved in the design of novel cancer therapies, which further underlines the significance of latex-bearing plants in biotechnology. Throughout the course of this review, we concluded that plant latex is a rich source of many compounds, which can be further investigated and applied in the design of anticancer pharmaceuticals. The molecules, to which this cytotoxic effect can be attributed, include alkaloids, flavonoids, tannins, terpenoids, proteases, nucleases and many novel compounds, which still remain to be characterized. They have been studied extensively in both in vitro and in vivo studies, which provide an excellent starting point for their rapid transfer to clinical studies in the near future. The comprehensive study of molecules from latex-bearing plants can result in finding a promising alternative to several pharmaceuticals on the market and help unravel the molecular mode of action of latex-based preparations.
Collapse
Affiliation(s)
- Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sophia Bałdysz
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Alicja Warowicka
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Xie Q, Hou H, Yan P, Zhang H, Lv Y, Li X, Chen L, Pang D, Hu Y, Ni X. Programmed cell death associated with the formation of schizo-lysigenous aerenchyma in Nelumbo nucifera root. FRONTIERS IN PLANT SCIENCE 2022; 13:968841. [PMID: 36247559 PMCID: PMC9556849 DOI: 10.3389/fpls.2022.968841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Nelumbo nucifera (N. nucifera) is an important aquatic economic crop with high edible, medicinal, ornamental, and ecological restoration values. Aerenchyma formation in N. nucifera root is an adaptive trait to the aquatic environment in long-term evolution. In this study, light microscopy, electron microscopy, and molecular biology techniques were used to study the process of the aerenchyma development and cytological events in N. nucifera root and the dynamic changes of aerenchyma formation under the treatment of exogenous 21% oxygen, ethylene (ET), and ET synthesis i + nhibitor 1-methylcyclopropene (1-MCP). The results showed that programmed cell death (PCD) occurred during the aerenchyma formation in N. nucifera root. Plasmalemma invagination and vacuole membrane rupture appeared in the formation stage, followed by nuclear deformation, chromatin condensation and marginalization, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) detection was positive at this time. In the expansion stage of the aerenchyma development, cytoplasmic degradation and many vesicles appeared in the cytoplasm, and organelles began to degrade. Then the plasma membrane began to degrade, and the degradation of the cell wall was the last PCD step. After 21% oxygen was continuously filled in the rhizosphere environment of N. nucifera roots, the area of aerenchyma in N. nucifera roots was smaller than that in the control group. Moreover, ET induced the earlier occurrence of aerenchyma in N. nucifera root, but also, the area of aerenchyma became larger than that of the control. On the contrary, 1-MCP inhibited the occurrence of aerenchyma to some extent. Therefore, the formation of aerenchyma in N. nucifera root resulted from PCD, and its formation mode was schizo-lysigenous. A hypoxic environment could induce aerenchyma formation in plants. ET signal was involved in aerenchyma formation in N. nucifera root and had a positive regulatory effect. This study provides relevant data on the formation mechanism of plant aerenchyma and the cytological basis for exploring the regulation mechanism of plant aerenchyma formation.
Collapse
Affiliation(s)
- Qinmi Xie
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
| | - Hui Hou
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
| | - Peixuan Yan
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Haiying Zhang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
| | - Yingze Lv
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xuebin Li
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, China
| | - Lin Chen
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, China
| | - Danbo Pang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, China
| | - Yang Hu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, China
| | - Xilu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, China
| |
Collapse
|
7
|
Ni X, Hou H, Xie Q, Zhang H, Yan P, Lv Y. Caspase 3‐like protease is involved in ethylene‐induced programmed cell death during aerenchyma formation in
Helianthus annuus
stem. Microsc Res Tech 2022; 85:3707-3715. [DOI: 10.1002/jemt.24222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xi‐Lu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North‐western China Ningxia University Yinchuan China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North‐western China of Ministry of Education, School of Ecology and Environment Ningxia University Yinchuan China
- Ningxia Helan Mountain Forest Ecosystem Research Station State Forestry Administration Yinchuan China
| | - Hui Hou
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North‐western China Ningxia University Yinchuan China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North‐western China of Ministry of Education, School of Ecology and Environment Ningxia University Yinchuan China
| | - Qinmi Xie
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North‐western China Ningxia University Yinchuan China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North‐western China of Ministry of Education, School of Ecology and Environment Ningxia University Yinchuan China
| | - Haiying Zhang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North‐western China Ningxia University Yinchuan China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North‐western China of Ministry of Education, School of Ecology and Environment Ningxia University Yinchuan China
| | - Peixuan Yan
- School of Agriculture Ningxia University Yinchuan China
| | - Yingze Lv
- School of Agriculture Ningxia University Yinchuan China
| |
Collapse
|
8
|
Liu MM, Zhao YY, Ma Y, Liu SS, Yao JQ, Chi YP, Li HF, Liao K, Zhu Y. The study of schizogenous formation of secretory ducts in Ferula ferulaeoides (Steud.) Korov. PROTOPLASMA 2022; 259:679-689. [PMID: 34338853 DOI: 10.1007/s00709-021-01690-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
The secretory ducts of Ferula ferulaeoides (Steud.) Korov. are the main tissue of synthesis, secretion, and accumulation of resin. The formation of secretory ducts is closely related to the harvest and quality of resin, but the lumen formation mode and corresponding mechanism have not been thoroughly studied. This study of F. ferulaeoides investigated the microstructure and ultrastructure of the secretory ducts from a developmental point of view. Stem samples were analyzed by light microscopy, transmission electron microscopy, and fluorescence microscopy. The data results showed (1) the walls of secretory cells were intact during the development of secretory ducts in F. ferulaeoides; (2) the plastids and endoplasmic reticulum of secretory cells participated in the synthesis of resin; (3) pectinase was involved in the degradation of the middle lamella; and (4) no features of programmed cell death during the formation of secretory ducts. The results suggested that the formation of F. ferulaeoides' secretory ducts was schizogenous, and pectinase was involved in its formation. These data may be beneficial to further explore the formation of secretory duct in other species of Ferula L. and the formation mechanism of schizogenous secretory structures.
Collapse
Affiliation(s)
- Meng-Meng Liu
- School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China
| | - Yuan-Yuan Zhao
- School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China
| | - Ying Ma
- School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China
| | - Shuang-Shuang Liu
- School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China
| | - Jia-Qi Yao
- School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China
| | - Ya-Ping Chi
- School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China
| | - Hui-Fang Li
- School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China
| | - Kai Liao
- School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China.
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China.
| | - Yun Zhu
- School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China.
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, Xinjiang, China.
| |
Collapse
|
9
|
Han X, Zhou Y, Ni X, Chu S, Cheng M, Tan L, Zha L, Peng H. Programmed cell death during the formation of rhytidome and interxylary cork in roots of Astragalus membranaceus (Leguminosae). Microsc Res Tech 2021; 84:1400-1413. [PMID: 33455029 DOI: 10.1002/jemt.23696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/01/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022]
Abstract
Programmed cell death (PCD) plays a critical role throughout the lives of plants, it is regarded as a highly regulated and active process of plant cell death during the times of biotic or abiotic stress. This study aims to provide developmental anatomical characteristics of the interxylary cork formation in the roots of Astragalus. membranaceus var. mongholicus, and to subsequently show cytomorphological evidence that PCD is involved in the development of rhytidome and interxylary cork. The developmental anatomy of rhytidome and interxylary cork of the perennial fresh main root of A. membranaceus var. mongholicus was studied using light microscopy, whereas the PCD in the development of rhytidome and interxylary cork was studied using fluorescence microscopy and transmission electron microscopy. Histologically, it was observed that the parenchyma cells of secondary phloem and xylem in roots recovered their meristematic ability, and later developed into rhytidome and interxylary cork. Cytologically, ultrastructural characteristics such as nucleus malformation, vacuole disappearance, mitochondrial degeneration, and vesicle filling were observed. In roots, the nucleus of the phloem parenchyma cells were terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive from the pre-rhytidome stage to the formation of rhytidome stage and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI)-negative during the mature rhytidome stage. The TUNEL assay of the xylem parenchyma cells showed positive characteristics from the early stage of interxylary cork formation to the interxylary cork formation stage, whereas DAPI-negative characteristics were observed in the mature interxylary cork. Gel electrophoresis showed that DNA cleavage was random. Our results indicated that the formation of the rhytidome and interxylary cork involved the PCD process.
Collapse
Affiliation(s)
- Xiaojing Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yafu Zhou
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, China
| | - Xilu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-western China; Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-western China of Ministry of Education, Ningxia University, Yinchuan, China
| | - Shanshan Chu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ming'en Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Lingling Tan
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China.,Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Zhang X, Wu Q, Zhao Y, Yang X. Decaisnea insignis Seed Oil Inhibits Trimethylamine- N-oxide Formation and Remodels Intestinal Microbiota to Alleviate Liver Dysfunction in l-Carnitine Feeding Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13082-13092. [PMID: 31671940 DOI: 10.1021/acs.jafc.9b05383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elevated circulating level of the intestinal microbiota-derived l-carnitine metabolite trimethylamine-N-oxide (TMAO) has recently been linked to many chronic diseases. The purpose of our study was to investigate the effects of omega-7-enriched Decaisnea insignis seed oil (DISO) on reducing TMAO formation to prevent the l-carnitine-induced hepatic damage in mice. Feeding of mice with 3% l-carnitine in drinking water clearly increased the serum and urinary levels of TMAO (p < 0.05 vs Normal), whereas the serum and urinary TMAO formation was sharply reduced by DISO administration (p < 0.05). Meanwhile, DISO resulted in strong inhibition against the elevation of hepatic injury marker (AST, ALT, and ALP) activities and dyslipidemia (TC, TG, LDL-C, and HDL-C), as well as liver inflammatory cytokine (IL-1, IL-6, TNF-α, and TNF-β) release in l-carnitine-fed mice (p < 0.05). As revealed by 16S rDNA gene sequencing, DISO significantly inhibited the l-carnitine-induced elevations in the abundance of Firmicutes, Proteobacteria, and Erysipelotrichaceae and the increases in the proportion of Lactobacillus and Akkermansia, revealing that DISO attenuated the l-carnitine-caused gut dysbiosis. These findings suggested that DISO could alleviate liver dysfunction in l-carnitine-fed mice, which might be due to the protection against TMAO formation by modulating the gut microbiota.
Collapse
|
11
|
Ni XL, Gui MY, Tan LL, Zhu Q, Liu WZ, Li CX. Programmed Cell Death and Aerenchyma Formation in Water-Logged Sunflower Stems and Its Promotion by Ethylene and ROS. FRONTIERS IN PLANT SCIENCE 2019; 9:1928. [PMID: 30687344 PMCID: PMC6333753 DOI: 10.3389/fpls.2018.01928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/12/2018] [Indexed: 05/25/2023]
Abstract
Previous studies have shown that waterlogging/ hypoxic conditions induce aerenchyma formation to facilitate gas exchange. Ethylene (ET) and reactive oxygen species (ROS), as regulatory signals, might also be involved in these adaptive responses. However, the interrelationships between these signals have seldom been reported. Herein, we showed that programmed cell death (PCD) was involved in aerenchyma formation in the stem of Helianthus annuus. Lysigenous aerenchyma formation in the stem was induced through waterlogging (WA), ethylene and ROS. Pre-treatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI) partially suppressed aerenchyma formation in the seedlings after treatment with WA, ET and 3-amino-1, 2, 4-triazole (AT, catalase inhibitor). In addition, pre-treatment with the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) partially suppressed aerenchyma formation induced through WA and ET in the seedlings, but barely inhibited aerenchyma formation induced through ROS. These results revealed that ethylene-mediated ROS signaling plays a role in aerenchyma formation, and there is a causal and interdependent relationship during WA, ET and ROS in PCD, which regulates signal networks in the stem of H. annuus.
Collapse
Affiliation(s)
- Xi-Lu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-western China, Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-western China of Ministry of Education, Yinchuan, China
- Key Laboratory for the Eco-Environment of the Three Gorges Reservoir Region of the Ministry of Education, College of Life Science, Southwest University, Chongqing, China
- School of Life Science, Northwest University, Xi'an, China
| | - Meng-Yuan Gui
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, China
| | - Ling-Ling Tan
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Qiang Zhu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-western China, Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-western China of Ministry of Education, Yinchuan, China
| | - Wen-Zhe Liu
- School of Life Science, Northwest University, Xi'an, China
| | - Chang-Xiao Li
- Key Laboratory for the Eco-Environment of the Three Gorges Reservoir Region of the Ministry of Education, College of Life Science, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Ni XL, Tan LL, Zhou YF, Liu WZ, Li CX. The involvement of programmed cell death in inflated leaf petiole morphogenesis in Trapa pseudoincisa. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:412-427. [PMID: 32290981 DOI: 10.1071/fp17203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/10/2017] [Indexed: 06/11/2023]
Abstract
Trapa plants (Trapaceae) have an inflated leaf petiole called a spongy airbag. The aims of this study were to assess the involvement of programmed cell death (PCD) in the process of inflated leaf petiole morphogenesis. In this paper, light and transmission electron microscopy (TEM) were used to investigate cytological events and the development of inflated leaf petiole. During this process, the inflated leaf petiole of Trapa pseudoincisa L. undergoes a developmental process, changing from solid to hollow phase. Debris from the degraded cells was seldom observed in the transverse sections of leaf petioles, but some degraded cells with an abnormal morphology were observed in longitudinal sections. Cytoplasmic changes, such as disrupted vacuoles, degraded plastids, and the emergence of secondary vacuoles were observed during leaf petiole morphogenesis. In addition, gel electrophoresis and TUNEL assays were used to evaluate DNA cleavage during petiole morphogenesis. DNA internucleosomal cleavage and TUNEL-positive nuclei indicate that the typical PCD features of DNA cleavage occurred early in the process. These results revealed that PCD plays a critical role in inflated leaf petiole morphogenesis. Additionally, a trans-disciplinary systems approach is required that recognises the necessity for integration of cytological and molecular characteristics for identification of aerenchyma type.
Collapse
Affiliation(s)
- Xi-Lu Ni
- Key Laboratory for the Eco-Environment of the Three Gorges Reservoir Region of the Ministry of Education, College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ling-Ling Tan
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Ya-Fu Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an 710061, China
| | - Wen-Zhe Liu
- School of Life Science, Northwest University, Xi'an 710069, China
| | - Chang-Xiao Li
- Key Laboratory for the Eco-Environment of the Three Gorges Reservoir Region of the Ministry of Education, College of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Souza ICC, Ramos MV, Costa JH, Freitas CDT, Oliveira RSB, Moreno FB, Moreira RA, Carvalho CPS. The osmotin of Calotropis procera latex is not expressed in laticifer-free cultivated callus and under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:312-318. [PMID: 28938177 DOI: 10.1016/j.plaphy.2017.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/10/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The latex of Calotropis procera has previously been reported to contain osmotin. This protein (CpOsm) inhibited phytopathogens and this was mechanistically characterized. Here, the time-course profile of CpOsm transcripts was examined in the salt-stressed cultivated callus of C. procera in order to better understand its role in the physiology of the plant. Stressed callus (80 mM NaCl) showed an unbalanced content of organic compounds (proline and total soluble sugar) and inorganic ions (Na+, Cl-, and K+). Under salt treatment, the transcripts of CpOsm were detected after 12 h and slightly increased to a maximum at day seven, followed by reduction. Interestingly, CpOsm was not detected in the soluble protein fraction recovered from the salt-stressed callus as probed by electrophoresis, dot/Western blotting and mass spectrometry. The results suggested that (1) CpOsm is not constitutive in cultivated cells (laticifer-free tissues); (2) CpOsm transcripts appear under salt-stressed conditions; (3) the absence of CpOsm in the protein fractions of stressed cultivated cells indicated that salt-induced transcripts were not used for protein synthesis and this accounts to the belief that CpOsm may be a true laticifer protein in C. procera. More effort will be needed to unveil this process. In this study we show evidences that CpOsm gene is responsive to salt stress. However the corresponding protein is not produced in cultivated cells. Therefore, presently the hypothesis that CpOsm is involved in abiotic stress is not fully supported.
Collapse
Affiliation(s)
- Isabel C C Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil.
| | - José H Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil
| | - Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil
| | | | - Frederico B Moreno
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil
| | - Renato A Moreira
- Núcleo de Biologia Experimental (NUBEX), Centro de Ciências da Saúde, Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | - Cristina P S Carvalho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Complete Chloroplast Genome Sequence of Decaisnea insignis: Genome Organization, Genomic Resources and Comparative Analysis. Sci Rep 2017; 7:10073. [PMID: 28855603 PMCID: PMC5577308 DOI: 10.1038/s41598-017-10409-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/08/2017] [Indexed: 11/09/2022] Open
Abstract
Decaisnea insignis is a wild resource plant and is used as an ornamental, medicinal, and fruit plant. High-throughput sequencing of chloroplast genomes has provided insight into the overall evolutionary dynamics of chloroplast genomes and has enhanced our understanding of the evolutionary relationships within plant families. In the present study, we sequenced the complete chloroplast genome of D. insignis and used the data to assess its genomic resources. The D. insignis chloroplast genome is 158,683 bp in length and includes a pair of inverted repeats of 26,167 bp that are separated by small and large single copy regions of 19,162 bp and 87,187 bp, respectively. We identified 83 simple sequence repeats and 18 pairs of large repeats. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited a high A/T content. The D. insignis chloroplast genome bias was skewed towards A/T on the basis of codon usage. A phylogenetic tree based on 82 protein-coding genes of 33 angiosperms showed that D. insignis was clustered with Akebia in Lardizabalaceae. Overall, the results of this study will contribute to better understanding the evolution, molecular biology and genetic improvement of D. insignis.
Collapse
|
15
|
Gui MY, Ni XL, Wang HB, Liu WZ. Temporal rhythm of petal programmed cell death in Ipomoea purpurea. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:768-775. [PMID: 27259176 DOI: 10.1111/plb.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 06/01/2016] [Indexed: 06/05/2023]
Abstract
Flowers are the main sexual reproductive organs in plants. The shapes, colours and scents of corolla of plant flowers are involved in attracting insect pollinators and increasing reproductive success. The process of corolla senescence was investigated in Ipomoea purpurea (Convolvulaceae) in this study. In the research methods of plant anatomy, cytology, cell chemistry and molecular biology were used. The results showed that at the flowering stage cells already began to show distortion, chromatin condensation, mitochondrial membrane degradation and tonoplast dissolution and rupture. At this stage genomic DNA underwent massive but gradual random degradation. However, judging from the shape and structure, aging characteristics did not appear until the early flower senescence stage. The senescence process was slow, and it was completed at the late stage of flower senescence with a withering corolla. We may safely arrive at the conclusion that corolla senescence of I. purpurea was mediated by programmed cell death (PCD) that occurred at the flowering stage. The corolla senescence exhibited an obvious temporal rhythm, which demonstrated a high degree of coordination with pollination and fertilization.
Collapse
Affiliation(s)
- M-Y Gui
- Henan Normal University, Xinxiang, China
| | - X-L Ni
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, China
| | - H-B Wang
- Henan Normal University, Xinxiang, China
| | - W-Z Liu
- School of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
16
|
Ni XL, Su H, Zhou YF, Wang FH, Liu WZ. Leaf-shape remodeling: programmed cell death in fistular leaves of Allium fistulosum. PHYSIOLOGIA PLANTARUM 2015; 153:419-431. [PMID: 25132341 DOI: 10.1111/ppl.12255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/02/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
Some species of Allium in Liliaceae have fistular leaves. The fistular lamina of Allium fistulosum undergoes a process from solid to hollow during development. The aims were to reveal the process of fistular leaf formation involved in programmed cell death (PCD) and to compare the cytological events in the execution of cell death to those in the unusual leaf perforations or plant aerenchyma formation. In this study, light and transmission electron microscopy were used to characterize the development of fistular leaves and cytological events. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays and gel electrophoresis were used to determine nuclear DNA cleavage during the PCD. The cavity arises in the leaf blade by degradation of specialized cells, the designated pre-cavity cells, in the center of the leaves. Nuclei of cells within the pre-cavity site become TUNEL-positive, indicating that DNA cleavage is an early event. Gel electrophoresis revealed that DNA internucleosomal cleavage occurred resulting in a characteristic DNA ladder. Ultrastructural analysis of cells at the different stages showed disrupted vacuoles, misshapen nuclei with condensed chromatin, degraded cytoplasm and organelles and emergence of secondary vacuoles. The cell walls degraded last, and residue of degraded cell walls aggregated together. These results revealed that PCD plays a critical role in the development of A. fistulosum fistular leaves. The continuous cavity in A. fistulosum leaves resemble the aerenchyma in the pith of some gramineous plants to improve gas exchange.
Collapse
Affiliation(s)
- Xi-Lu Ni
- School of Life Science, Northwest University, Xi'an 710069, China; State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan 750004, China
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Zhou YF, Mao SL, Li SF, Ni XL, Li B, Liu WZ. Programmed cell death: a mechanism for the lysigenous formation of secretory cavities in leaves of Dictamnus dasycarpus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:147-160. [PMID: 25017170 DOI: 10.1016/j.plantsci.2014.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 06/03/2023]
Abstract
The formation of secretory cavities in Rutaceae has been the subject of great interest. In this study, cytological events that are involved in the lysigenous formation of the secretory cavities in the leaves of Dictamnus dasycarpus are characterized by an interesting pattern of programmed cell death (PCD). During the developmental process, clusters of cells from a single protoepidermal cell embark on different trajectories and undergo different cell death fates: the cell walls of the secretory cells have characteristics of thinning or complete breakdown, while the sheath cells present a predominantly thick-walled feature. A DAPI assay shows deformed nuclei that are further confirmed to be TUNEL-positive. Gel electrophoresis indicates that DNA cleavage is random and does not result in ladder-like DNA fragmentation. Ultrastructurally, several remarkable features of PCD have been determined, such as misshapen nuclei with condensed chromatin and a significantly diffused membrane, degenerated mitochondria and plastids with disturbed membrane systems, multivesicular bodies, plastolysomes, vacuole disruption and lysis of the center secretory cell. Cytological evidence and Nile red stains exhibit abundant essential oils accumulated in degenerated outer secretory cells after the dissolution of the center secretory cell. In addition, explanations of taxonomic importance and the relationship between PCD and oil droplet accumulation in the secretory cavities are also discussed.
Collapse
Affiliation(s)
- Ya-Fu Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an 710061, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Shao-Li Mao
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an 710061, China
| | - Si-Feng Li
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an 710061, China
| | - Xi-Lu Ni
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Bin Li
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an 710061, China
| | - Wen-Zhe Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
19
|
Gui MY, Liu WZ. Programmed cell death during floral nectary senescence in Ipomoea purpurea. PROTOPLASMA 2014; 251:677-685. [PMID: 24185946 DOI: 10.1007/s00709-013-0570-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 06/02/2023]
Abstract
The nectaries of Ipomoea purpurea wilt in the late flowering period. The senescence process of nectaries is frequently associated with cell lysis. In this paper, various techniques were used to investigate whether programmed cell death (PCD) was involved in the senescence process of nectaries in I. purpurea. Ultrastructural studies showed that nectary cells began to undergo structural distortion, chromatin condensation, mitochondrial membrane degradation, and vacuolar-membrane dissolution and rupture after bloom. 4',6-Diamidino-2-phenylindole (DAPI) and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine-5'-triphosphate (dUTP) nick end-labeling (TUNEL) assay showed that nectary cell nuclear DNA began to degrade during the budding stage, and disappeared in the fruiting stage. DNA gel electrophoresis showed that degradation of DNA was random. Together, these results suggest that PCD participate in the senescence of the nectary in I. purpurea. PCD began during the budding period, followed by significant changes in nectary morphology and structure during the flowering period. During the fruiting stage, the PCD process is complete and the nectary degrades.
Collapse
Affiliation(s)
- Meng-Yuan Gui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, school of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, China
| | | |
Collapse
|
20
|
Ellis CE, Suuronen E, Yeung T, Seeberger K, Korbutt GS. Bioengineering a highly vascularized matrix for the ectopic transplantation of islets. Islets 2013; 5:216-25. [PMID: 24262950 PMCID: PMC4010574 DOI: 10.4161/isl.27175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Islet transplantation is a promising treatment for Type 1 diabetes; however limitations of the intra-portal site and poor revascularization of islets must be overcome. We hypothesize that engineering a highly vascularized collagen-based construct will allow islet graft survival and function in alternative sites. In this study, we developed such a collagen-based biomaterial. Neonatal porcine islets (NPIs) were embedded in collagen matrices crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide containing combinations of chondroitin-6-sulfate, chitosan, and laminin, and compared with controls cultured in standard media. Islets were examined for insulin secretory activity after 24 h and 4 d and for apoptotic cell death and matrix integrity after 7 d in vitro. These same NPI/collagen constructs were transplanted subcutaneously in immunoincompetent B6.Rag-/- mice and then assessed for islet survival and vascularization. At all time points assessed during in vitro culture there were no significant differences in insulin secretory activity between control islets and those embedded in the collagen constructs, indicating that the collagen matrix had no adverse effect on islet function. Less cell death was observed in the matrix with all co-polymers compared with the other matrices tested. Immunohistochemical analysis of the grafts post-transplant confirmed the presence of intact insulin-positive islets; grafts were also shown to be vascularized by von Willebrand factor staining. This study demonstrates that a collagen, chondroitin-6-sulfate, chitosan, and laminin matrix supports islet function in vitro and moreover allows islet survival and vascularization post-transplantation; therefore, this bio-engineered vascularized construct is capable of supporting islet survival.
Collapse
Affiliation(s)
- Cara E Ellis
- Department of Surgery; University of Alberta; Edmonton, AB Canada
- Alberta Diabetes Institute; University of Alberta; Edmonton, AB Canada
| | - Erik Suuronen
- Division of Cardiac Surgery; University of Ottawa Heart Institute; Ottawa, ON Canada
| | - Telford Yeung
- Department of Surgery; University of Alberta; Edmonton, AB Canada
- Alberta Diabetes Institute; University of Alberta; Edmonton, AB Canada
| | - Karen Seeberger
- Department of Surgery; University of Alberta; Edmonton, AB Canada
- Alberta Diabetes Institute; University of Alberta; Edmonton, AB Canada
| | - Gregory S Korbutt
- Department of Surgery; University of Alberta; Edmonton, AB Canada
- Alberta Diabetes Institute; University of Alberta; Edmonton, AB Canada
- Correspondence to: Gregory S Korbutt,
| |
Collapse
|
21
|
Konno K. Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. PHYTOCHEMISTRY 2011; 72:1510-30. [PMID: 21450319 DOI: 10.1016/j.phytochem.2011.02.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 05/20/2023]
Abstract
Plant latex and other exudates are saps that are exuded from the points of plant damage caused either mechanically or by insect herbivory. Although many (ca. 10%) of plant species exude latex or exudates, and although the defensive roles of plant latex against herbivorous insects have long been suggested by several studies, the detailed roles and functions of various latex ingredients, proteins and chemicals, in anti-herbivore plant defenses have not been well documented despite the wide occurrence of latex in the plant kingdom. Recently, however, substantial progress has been made. Several latex proteins, including cysteine proteases and chitin-related proteins, have been shown to play important defensive roles against insect herbivory. In the mulberry (Morus spp.)-silkworm (Bombyx mori) interaction, an old and well-known model system of plant-insect interaction, plant latex and its ingredients--sugar-mimic alkaloids and defense protein MLX56--are found to play key roles. Complicated molecular interactions between Apocynaceae species and its specialist herbivores, in which cardenolides and defense proteins in latex play key roles, are becoming more and more evident. Emerging observations suggested that plant latex, analogous to animal venom, is a treasury of useful defense proteins and chemicals that has evolved through interspecific interactions. On the other hand, specialist herbivores developed sophisticated adaptations, either molecular, physiological, or behavioral, against latex-borne defenses. The existence of various adaptations in specialist herbivores itself is evidence that latex and its ingredients function as defenses at least against generalists. Here, we review molecular and structural mechanisms, ecological roles, and evolutionary aspects of plant latex as a general defense against insect herbivory and we discuss, from recent studies, the unique characteristics of latex-borne defense systems as transport systems of defense substances are discussed based on recent studies.
Collapse
Affiliation(s)
- Kotaro Konno
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|