1
|
Patel P, Raval M, Airao V, Ali N, Shazly GA, Khan R, Prajapati B. Formulation of Folate Receptor-Targeted Silibinin-Loaded Inhalable Chitosan Nanoparticles by the QbD Approach for Lung Cancer Targeted Delivery. ACS OMEGA 2024; 9:10353-10370. [PMID: 38463259 PMCID: PMC10918659 DOI: 10.1021/acsomega.3c07954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Aim: Targeted delivery of chemotherapeutics by functionalized nanoparticles exhibits a wonderful prospect for cancer treatment. The main objective of this research was to develop folate receptor-targeted silibinin (SB)-loaded inhalable polymeric nanoparticles (FA-CS-SB-NPs) for the treatment of lung cancer. Method: The qbD approach was implemented to prepare SB-loaded nanoparticles. Folic acid was conjugated by electrostatic conjugation in an optimized batch. The therapeutic potentials of formulations were determined using a lung cancer cell-bearing rat model. Result: Optimized formulation exhibited a spherical surface with a mean particle size of 275 ± 1.20 nm, a PDI of 0.234 ± 0.07, a ζ-potential of 32.50 ± 0.21, an entrapment efficiency of 75.52 ± 0.87%, and a CDR of 63.25 ± 1.21% at 48 h. Aerodynamic behaviors such as the mass median aerodynamic diameter (MMAD) and geometric size distribution (GSD) were found to be 2.75 ± 1.02 and 3.15 ± 0.88 μm, respectively. After 24 h of incubation with FA-CS-SB-NPs, the IC50 value was found to be 24.5 g/mL. FA-SB-CS-NPs maintained a significantly higher deposition of SB in lung tissues. Conclusions: Thus, the noninvasive nature and target specificity of FA-CS-SB-NPs pave the way for pulmonary delivery for treating lung cancer.
Collapse
Affiliation(s)
- Priya Patel
- Department
of Pharmaceutical Sciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Mihir Raval
- Department
of Pharmaceutical Sciences, Sardar Patel
University, Vallabh Vidya Nagar 388120, Gujarat, India
| | - Vishal Airao
- Department
of Pharmaceutical Sciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Gamal A. Shazly
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Rehan Khan
- Public
Health Research Institute (PHRI), Rutgers,
New Jersey Medical School (NJMS), 225 Warren Street, Newark, New Jersey 07103, United States
| | - Bhupendra Prajapati
- Shree S.
K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| |
Collapse
|
2
|
Lung cancer targeting efficiency of Silibinin loaded Poly Caprolactone /Pluronic F68 Inhalable nanoparticles: In vitro and In vivo study. PLoS One 2022; 17:e0267257. [PMID: 35560136 PMCID: PMC9106168 DOI: 10.1371/journal.pone.0267257] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Silibinin (SB) is shown to have an anticancer properties. However, its clinical therapeutic effects have been restricted due to its low water solubility and poor absorption after oral administration. The aim of this study was to develop SB-loaded PCL/Pluronic F68 nanoparticles for pulmonary delivery in the treatment of lung cancer. A modified solvent displacement process was used to make nanoparticles, which were then lyophilized to make inhalation powder, Nanoparticles were characterized with DSC, FTIR,SEM and In vitro release study. Further, a validated HPLC method was developed to investigate the Biodistribution study, pharmacokinetic parameters. Poly Caprolactone PCL / Pluronic F68 NPs showed the sustained release effect up to 48 h with an emitted (Mass median Aerodynamic diameter)MMAD and (Geometric size distribution)GSD were found to be 4.235 ±0.124 and 1.958±1.23 respectively. More specifically, the SB Loaded PCL/Pluronic F 68 NPs demonstrated long circulation and successful lung tumor-targeting potential due to their cancer-targeting capabilities. SB Loaded PCL/Pluronic F68 NPs significantly inhibited tumour growth in lung cancer-induced rats after inhalable administration. In a pharmacokinetics study, PCL/ Pluronic F68 NPs substantially improved SB bioavailability, with a more than 4-fold rise in AUC when compared to IV administration. These findings indicate that SB-loaded PCL/PluronicF68 nanoparticles may be a successful lung cancer therapy delivery system.
Collapse
|
3
|
Patel P, Raval M, Airao V, Bhatt V, Shah P. Silibinin loaded inhalable solid lipid nanoparticles for lung targeting. J Microencapsul 2021; 39:1-24. [PMID: 34825627 DOI: 10.1080/02652048.2021.2002448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIM In the current study, efforts are being made to prepare Inhalable Silibinin loaded solid lipid nanoparticles (SLNs) with narrow size distribution with improved bioavailability. METHODS SLNs were formulated by high shear homogenisation method SLNs were characterised, including Differential Scanning Calorimetry (DSC), Fourier transform infra-red spectroscopy (FTIR), particle size analysis, entrapment efficiency with Aerodynamic behaviour. The MTT assay was performed against A549 cell line, to measure their anticancer cell activity with In vivo study. RESULTS Optimized formulation exhibited spherical surface with a mean particle size of 221 ± 1.251 nm, PI of 0.121 ± 0.081, zeta potential of -4.12 ± 0.744. Aerodynamic behaviour such as Mass median aerodynamic diameter (MMAD) and Geometric size distribution (GSD) were found to be 5.487 ± 0.072 and 2.321 ± 0.141 respectively proved formulation is suitable for inhalation. In vitro cellular efficacy against A549 cells, revealed that the optimised formulations were more effective and potent. CONCLUSION The Inhalable SLNs approach was successfully engineered and administered to the lungs safely without causing any problems.
Collapse
Affiliation(s)
- Priya Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Mihir Raval
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Vishal Airao
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Vaibhav Bhatt
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | - Pranav Shah
- Maliba Pharmacy College, Uka Tarsadia University, Tarsadi, India
| |
Collapse
|
4
|
Asad M, Wajid S, Katare DP, Mani RJ, Jain SK. Differential Expression of TOM34, AL1A1, PADI2 and KLRBA in NNK Induced Lung Cancer in Wistar Rats and their Implications. Curr Cancer Drug Targets 2020; 19:919-929. [PMID: 31544692 DOI: 10.2174/1871525717666190717162646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/15/2019] [Accepted: 06/28/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Lung cancer is the most common cancer with a high mortality rate. The diagnosis only at advanced stages and lack of effective treatment are the main factors responsible for high mortality. Tobacco smoke is the major responsible factor for inflammation and tumor development in lungs. OBJECTIVE The present study was carried out to identify differentially expressed proteins and elucidate their role in carcinogenesis. METHODS The lung cancer was developed in Wistar rats by using NNK as carcinogen and cancer development was confirmed by histopathological examination. The 2D SDS PAGE was used to analyse total proteins and find out differentially expressed proteins in NNK treated lung tissue vis-a-vis control tissue. The findings of proteomic analysis were further validated by quantification of corresponding transcripts using Real Time PCR. Finally, Cytoscape was used to find out protein-protein interaction. RESULTS The histopathological examinations showed neoplasia at 9th month after NNK treatment. The proteomic analysis revealed several differentially expressed proteins, four of which were selected for further studies. (TOM34, AL1A1, PADI2 and KLRBA) that were up regulated in NNK treated lung tissue. The real time analysis showed over expression of the genes coding for the selected proteins. Thus, the proteomic and transcriptomic data corroborate each other. Further, these proteins showed interaction with the members of NF-κB family and STAT3. CONCLUSION We conclude that these proteins play a substantial role in the induction of lung cancer through NF-κB and STAT3 pathway. Therefore, these may have the potential to be used as therapeutic targets and for early detection of lung cancer.
Collapse
Affiliation(s)
- Mohammad Asad
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India
| | - Deepshikha Pande Katare
- Proteomics & Translational Research Lab, Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida- 201313, India
| | - Ruchi Jakhmola Mani
- Proteomics & Translational Research Lab, Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida- 201313, India
| | - Swatantra Kumar Jain
- Department of Biochemistry, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
5
|
Liu Y, Yin T, Feng Y, Cona MM, Huang G, Liu J, Song S, Jiang Y, Xia Q, Swinnen JV, Bormans G, Himmelreich U, Oyen R, Ni Y. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research. Quant Imaging Med Surg 2015; 5:708-29. [PMID: 26682141 PMCID: PMC4671963 DOI: 10.3978/j.issn.2223-4292.2015.06.01] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
Compared with transplanted tumor models or genetically engineered cancer models, chemically induced primary malignancies in experimental animals can mimic the clinical cancer progress from the early stage on. Cancer caused by chemical carcinogens generally develops through three phases namely initiation, promotion and progression. Based on different mechanisms, chemical carcinogens can be divided into genotoxic and non-genotoxic ones, or complete and incomplete ones, usually with an organ-specific property. Chemical carcinogens can be classified upon their origins such as environmental pollutants, cooked meat derived carcinogens, N-nitroso compounds, food additives, antineoplastic agents, naturally occurring substances and synthetic carcinogens, etc. Carcinogen-induced models of primary cancers can be used to evaluate the diagnostic/therapeutic effects of candidate drugs, investigate the biological influential factors, explore preventive measures for carcinogenicity, and better understand molecular mechanisms involved in tumor initiation, promotion and progression. Among commonly adopted cancer models, chemically induced primary malignancies in mammals have several advantages including the easy procedures, fruitful tumor generation and high analogy to clinical human primary cancers. However, in addition to the time-consuming process, the major drawback of chemical carcinogenesis for translational research is the difficulty in noninvasive tumor burden assessment in small animals. Like human cancers, tumors occur unpredictably also among animals in terms of timing, location and the number of lesions. Thanks to the availability of magnetic resonance imaging (MRI) with various advantages such as ionizing-free scanning, superb soft tissue contrast, multi-parametric information, and utility of diverse contrast agents, now a workable solution to this bottleneck problem is to apply MRI for noninvasive detection, diagnosis and therapeutic monitoring on those otherwise uncontrollable animal models with primary cancers. Moreover, it is foreseeable that the combined use of chemically induced primary cancer models and molecular imaging techniques may help to develop new anticancer diagnostics and therapeutics.
Collapse
|
6
|
Ge GZ, Xu TR, Chen C. Tobacco carcinogen NNK-induced lung cancer animal models and associated carcinogenic mechanisms. Acta Biochim Biophys Sin (Shanghai) 2015; 47:477-87. [PMID: 26040315 DOI: 10.1093/abbs/gmv041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022] Open
Abstract
Tobacco usage is a major risk factor in the development, progression, and outcomes for lung cancer. Of the carcinogens associated with lung cancer, tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is among the most potent ones. The oncogenic mechanisms of NNK are not entirely understood, hindering the development of effective strategies for preventing and treating smoking-associated lung cancers. Here, we introduce the NNK-induced lung cancer animal models in different species and its potential mechanisms. Finally, we summarize several chemopreventive agents developed from these animal models.
Collapse
Affiliation(s)
- Guang-Zhe Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|