1
|
Peixoto ML, Madan E. Unraveling the complexity: Advanced methods in analyzing DNA, RNA, and protein interactions. Adv Cancer Res 2024; 163:251-302. [PMID: 39271265 DOI: 10.1016/bs.acr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Exploring the intricate interplay within and between nucleic acids, as well as their interactions with proteins, holds pivotal significance in unraveling the molecular complexities steering cancer initiation and progression. To investigate these interactions, a diverse array of highly specific and sensitive molecular techniques has been developed. The selection of a particular technique depends on the specific nature of the interactions. Typically, researchers employ an amalgamation of these different techniques to obtain a comprehensive and holistic understanding of inter- and intramolecular interactions involving DNA-DNA, RNA-RNA, DNA-RNA, or protein-DNA/RNA. Examining nucleic acid conformation reveals alternative secondary structures beyond conventional ones that have implications for cancer pathways. Mutational hotspots in cancer often lie within sequences prone to adopting these alternative structures, highlighting the importance of investigating intra-genomic and intra-transcriptomic interactions, especially in the context of mutations, to deepen our understanding of oncology. Beyond these intramolecular interactions, the interplay between DNA and RNA leads to formations like DNA:RNA hybrids (known as R-loops) or even DNA:DNA:RNA triplex structures, both influencing biological processes that ultimately impact cancer. Protein-nucleic acid interactions are intrinsic cellular phenomena crucial in both normal and pathological conditions. In particular, genetic mutations or single amino acid variations can alter a protein's structure, function, and binding affinity, thus influencing cancer progression. It is thus, imperative to understand the differences between wild-type (WT) and mutated (MT) genes, transcripts, and proteins. The review aims to summarize the frequently employed methods and techniques for investigating interactions involving nucleic acids and proteins, highlighting recent advancements and diverse adaptations of each technique.
Collapse
Affiliation(s)
- Maria Leonor Peixoto
- Champalimaud Center for the Unknown, Lisbon, Portugal; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Esha Madan
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
2
|
Fontana M, Ivanovaitė Š, Lindhoud S, van der Wijk E, Mathwig K, Berg WVD, Weijers D, Hohlbein J. Probing DNA - Transcription Factor Interactions Using Single-Molecule Fluorescence Detection in Nanofluidic Devices. Adv Biol (Weinh) 2022; 6:e2100953. [PMID: 34472724 DOI: 10.1002/adbi.202100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Indexed: 01/27/2023]
Abstract
Single-molecule fluorescence detection offers powerful ways to study biomolecules and their complex interactions. Here, nanofluidic devices and camera-based, single-molecule Förster resonance energy transfer (smFRET) detection are combined to study the interactions between plant transcription factors of the auxin response factor (ARF) family and DNA oligonucleotides that contain target DNA response elements. In particular, it is shown that the binding of the unlabeled ARF DNA binding domain (ARF-DBD) to donor and acceptor labeled DNA oligonucleotides can be detected by changes in the FRET efficiency and changes in the diffusion coefficient of the DNA. In addition, this data on fluorescently labeled ARF-DBDs suggest that, at nanomolar concentrations, ARF-DBDs are exclusively present as monomers. In general, the fluidic framework of freely diffusing molecules minimizes potential surface-induced artifacts, enables high-throughput measurements, and proved to be instrumental in shedding more light on the interactions between ARF-DBDs monomers and between ARF-DBDs and their DNA response element.
Collapse
Affiliation(s)
- Mattia Fontana
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Šarunė Ivanovaitė
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Elmar van der Wijk
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Klaus Mathwig
- Groningen Research Institute of Pharmacy, Pharmaceutical Analysis, University of Groningen, P.O. Box 196, 9700 AD, Groningen, The Netherlands.,Stichting Imec Nederland within OnePlanet Research Center, Bronland 10, Wageningen, 6708 WH, The Netherlands
| | - Willy van den Berg
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Johannes Hohlbein
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Microspectroscopy Research Facility, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
3
|
Lei KH, Yang HL, Chang HY, Yeh HY, Nguyen DD, Lee TY, Lyu X, Chastain M, Chai W, Li HW, Chi P. Crosstalk between CST and RPA regulates RAD51 activity during replication stress. Nat Commun 2021; 12:6412. [PMID: 34741010 PMCID: PMC8571288 DOI: 10.1038/s41467-021-26624-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Replication stress causes replication fork stalling, resulting in an accumulation of single-stranded DNA (ssDNA). Replication protein A (RPA) and CTC1-STN1-TEN1 (CST) complex bind ssDNA and are found at stalled forks, where they regulate RAD51 recruitment and foci formation in vivo. Here, we investigate crosstalk between RPA, CST, and RAD51. We show that CST and RPA localize in close proximity in cells. Although CST stably binds to ssDNA with a high affinity at low ionic strength, the interaction becomes more dynamic and enables facilitated dissociation at high ionic strength. CST can coexist with RPA on the same ssDNA and target RAD51 to RPA-coated ssDNA. Notably, whereas RPA-coated ssDNA inhibits RAD51 activity, RAD51 can assemble a functional filament and exhibit strand-exchange activity on CST-coated ssDNA at high ionic strength. Our findings provide mechanistic insights into how CST targets and tethers RAD51 to RPA-coated ssDNA in response to replication stress.
Collapse
Affiliation(s)
- Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Han-Lin Yang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hao-Yen Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Dinh Duc Nguyen
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Tzu-Yu Lee
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Xinxing Lyu
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Megan Chastain
- Office of Research, Washington State University, Spokane, WA, USA
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan. .,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Kopu̅stas A, Ivanovaitė Š, Rakickas T, Pocevičiu̅tė E, Paksaitė J, Karvelis T, Zaremba M, Manakova E, Tutkus M. Oriented Soft DNA Curtains for Single-Molecule Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3428-3437. [PMID: 33689355 PMCID: PMC8280724 DOI: 10.1021/acs.langmuir.1c00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Over the past 20 years, single-molecule methods have become extremely important for biophysical studies. These methods, in combination with new nanotechnological platforms, can significantly facilitate experimental design and enable faster data acquisition. A nanotechnological platform, which utilizes a flow-stretch of immobilized DNA molecules, called DNA Curtains, is one of the best examples of such combinations. Here, we employed new strategies to fabricate a flow-stretch assay of stably immobilized and oriented DNA molecules using a protein template-directed assembly. In our assay, a protein template patterned on a glass coverslip served for directional assembly of biotinylated DNA molecules. In these arrays, DNA molecules were oriented to one another and maintained extended by either single- or both-end immobilization to the protein templates. For oriented both-end DNA immobilization, we employed heterologous DNA labeling and protein template coverage with the antidigoxigenin antibody. In contrast to single-end immobilization, both-end immobilization does not require constant buffer flow for keeping DNAs in an extended configuration, allowing us to study protein-DNA interactions at more controllable reaction conditions. Additionally, we increased the immobilization stability of the biotinylated DNA molecules using protein templates fabricated from traptavidin. Finally, we demonstrated that double-tethered Soft DNA Curtains can be used in nucleic acid-interacting protein (e.g., CRISPR-Cas9) binding assay that monitors the binding location and position of individual fluorescently labeled proteins on DNA.
Collapse
Affiliation(s)
- Aurimas Kopu̅stas
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Šaru̅nė Ivanovaitė
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
| | - Tomas Rakickas
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
| | - Ernesta Pocevičiu̅tė
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Justė Paksaitė
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Tautvydas Karvelis
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Mindaugas Zaremba
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Elena Manakova
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Marijonas Tutkus
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
5
|
Tutkus M, Rakickas T, Kopu Stas A, Ivanovaitė ŠN, Venckus O, Navikas V, Zaremba M, Manakova E, Valiokas RN. Fixed DNA Molecule Arrays for High-Throughput Single DNA-Protein Interaction Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5921-5930. [PMID: 30955328 DOI: 10.1021/acs.langmuir.8b03424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The DNA Curtains assay is a recently developed experimental platform for protein-DNA interaction studies at the single-molecule level that is based on anchoring and alignment of DNA fragments. The DNA Curtains so far have been made by using chromium barriers and fluid lipid bilayer membranes, which makes such a specialized assay technically challenging and relatively unstable. Herein, we report on an alternative strategy for DNA arraying for analysis of individual DNA-protein interactions. It relies on stable DNA tethering onto nanopatterned protein templates via high affinity molecular recognition. We describe fabrication of streptavidin templates (line features as narrow as 200 nm) onto modified glass coverslips by combining surface chemistry, atomic force microscopy (AFM), and soft lithography techniques with affinity-driven assembly. We have employed such chips for arraying single- and double-tethered DNA strands, and we characterized the obtained molecular architecture: we evaluated the structural characteristics and specific versus nonspecific binding of fluorescence-labeled DNA using AFM and total internal reflection fluorescence microscopy. We demonstrate the feasibility of our DNA molecule arrays for short single-tethered as well as for lambda single- and double-tethered DNA. The latter type of arrays proved very suitable for localization of single DNA-protein interactions employing restriction endonucleases. The presented molecular architecture and facile method of fabrication of our nanoscale platform does not require clean room equipment, and it offers advanced functional studies of DNA machineries and the development of future nanodevices.
Collapse
Affiliation(s)
| | | | - Aurimas Kopu Stas
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | | | | | | | - Mindaugas Zaremba
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | - Elena Manakova
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | | |
Collapse
|
6
|
Gong W, Das P, Samanta S, Xiong J, Pan W, Gu Z, Zhang J, Qu J, Yang Z. Redefining the photo-stability of common fluorophores with triplet state quenchers: mechanistic insights and recent updates. Chem Commun (Camb) 2019; 55:8695-8704. [PMID: 31073568 DOI: 10.1039/c9cc02616a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Light microscopy can offer certain advantages over electron microscopy in terms of acquiring detailed insights into the biological/intra-cellular milieu. In recent years, with the development of new fluorescence imaging technologies, it has become extremely important to assess the role of designing appropriate fluorophores in acquiring desired biological information without encountering any untoward hitches. Over the years, external fluorophores have been prevalently used in fluorescence microscopy and single-molecule fluorescence microscopy-based studies. Photostable fluorogenic probes with high extinction coefficients and quantum yields, exhibiting minimum autofluorescence and photobleaching properties, are preferred in single-molecule microscopy as they can tolerate long-term laser exposure. Therefore, the development of triplet state quenchers and/or any other suitable new strategy to ensure the photo-stability of the fluorophores during long-term live cell imaging exercises is highly anticipated. In this feature article, various strategies for stabilizing fluorophores, including the mechanisms of TSQ-induced stabilization, have been thoroughly reviewed considering contemporary literature reports and applications.
Collapse
Affiliation(s)
- Wanjun Gong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fijen C, Montón Silva A, Hochkoeppler A, Hohlbein J. A single-molecule FRET sensor for monitoring DNA synthesis in real time. Phys Chem Chem Phys 2018; 19:4222-4230. [PMID: 28116374 DOI: 10.1039/c6cp05919h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a versatile DNA assay and framework for monitoring polymerization of DNA in real time and at the single-molecule level. The assay consists of an acceptor labelled DNA primer annealed to a DNA template that is labelled on its single stranded, downstream overhang with a donor fluorophore. Upon extension of the primer using a DNA polymerase, the overhang of the template alters its conformation from a random coil to the canonical structure of double stranded DNA. This conformational change increases the distance between the donor and the acceptor fluorophore and can be detected as a decrease in the Förster resonance energy transfer (FRET) efficiency between both fluorophores. Remarkably, the DNA assay does not require any modification of the DNA polymerase and albeit the simple and robust spectroscopic readout facilitates measurements even with conventional fluorimeters or stopped-flow equipment, single-molecule FRET provides additional access to parameters such as the processivity of DNA synthesis and, for one of the three DNA polymerases tested, the detection of binding and dissociation of the DNA polymerase to DNA. We furthermore demonstrate that primer extensions by a single base can be resolved.
Collapse
Affiliation(s)
- Carel Fijen
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.
| | - Alejandro Montón Silva
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands. and Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, Bologna, 40136, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, Bologna, 40136, Italy
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands. and Microspectroscopy Centre, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
8
|
Kim E, Baaske MD, Schuldes I, Wilsch PS, Vollmer F. Label-free optical detection of single enzyme-reactant reactions and associated conformational changes. SCIENCE ADVANCES 2017; 3:e1603044. [PMID: 28435868 PMCID: PMC5371424 DOI: 10.1126/sciadv.1603044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/09/2017] [Indexed: 05/21/2023]
Abstract
Monitoring the kinetics and conformational dynamics of single enzymes is crucial to better understand their biological functions because these motions and structural dynamics are usually unsynchronized among the molecules. However, detecting the enzyme-reactant interactions and associated conformational changes of the enzyme on a single-molecule basis remains as a challenge to established optical techniques because of the commonly required labeling of the reactants or the enzyme itself. The labeling process is usually nontrivial, and the labels themselves might skew the physical properties of the enzyme. We demonstrate an optical, label-free method capable of observing enzymatic interactions and associated conformational changes on a single-molecule level. We monitor polymerase/DNA interactions via the strong near-field enhancement provided by plasmonic nanorods resonantly coupled to whispering gallery modes in microcavities. Specifically, we use two different recognition schemes: one in which the kinetics of polymerase/DNA interactions are probed in the vicinity of DNA-functionalized nanorods, and the other in which these interactions are probed via the magnitude of conformational changes in the polymerase molecules immobilized on nanorods. In both approaches, we find that low and high polymerase activities can be clearly discerned through their characteristic signal amplitude and signal length distributions. Furthermore, the thermodynamic study of the monitored interactions suggests the occurrence of DNA polymerization. This work constitutes a proof-of-concept study of enzymatic activities using plasmonically enhanced microcavities and establishes an alternative and label-free method capable of investigating structural changes in single molecules.
Collapse
Affiliation(s)
- Eugene Kim
- Corresponding author. (E.K.); (M.D.B.); (F.V.)
| | | | | | | | | |
Collapse
|
9
|
Hohlbein J, Kapanidis AN. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET. Methods Enzymol 2016; 581:353-378. [PMID: 27793286 DOI: 10.1016/bs.mie.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open and closed conformations of DNA polymerases, our smFRET assays utilizing doubly labeled variants of Escherichia coli DNA polymerase I were pivotal in identifying and characterizing a partially closed conformation as a primary checkpoint for nucleotide selection. Here, we provide a comprehensive overview of the methods we used for the conformational analysis of wild-type DNA polymerase and some of its low-fidelity derivatives; these methods include strategies for protein labeling and our procedures for solution-based single-molecule fluorescence data acquisition and data analysis. We also discuss alternative single-molecule fluorescence strategies for analyzing the conformations of DNA polymerases in vitro and in vivo.
Collapse
Affiliation(s)
- J Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Wageningen, The Netherlands; Microspectroscopy Centre, Wageningen University and Research, Wageningen, The Netherlands.
| | - A N Kapanidis
- Clarendon Laboratory, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
10
|
Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers. Sci Rep 2016; 6:33257. [PMID: 27641327 PMCID: PMC5027553 DOI: 10.1038/srep33257] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/24/2016] [Indexed: 01/24/2023] Open
Abstract
Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.
Collapse
|
11
|
Farooq S, Hohlbein J. Camera-based single-molecule FRET detection with improved time resolution. Phys Chem Chem Phys 2016; 17:27862-72. [PMID: 26439729 DOI: 10.1039/c5cp04137f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The achievable time resolution of camera-based single-molecule detection is often limited by the frame rate of the camera. Especially in experiments utilizing single-molecule Förster resonance energy transfer (smFRET) to probe conformational dynamics of biomolecules, increasing the frame rate by either pixel-binning or cropping the field of view decreases the number of molecules that can be monitored simultaneously. Here, we present a generalised excitation scheme termed stroboscopic alternating-laser excitation (sALEX) that significantly improves the time resolution without sacrificing highly parallelised detection in total internal reflection fluorescence (TIRF) microscopy. In addition, we adapt a technique known from diffusion-based confocal microscopy to analyse the complex shape of FRET efficiency histograms. We apply both sALEX and dynamic probability distribution analysis (dPDA) to resolve conformational dynamics of interconverting DNA hairpins in the millisecond time range.
Collapse
Affiliation(s)
- Shazia Farooq
- Laboratory of Biophysics, Wageningen UR, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| | | |
Collapse
|
12
|
Zhong S, Zou D, Zhao B, Zhang D, Li X, Wang H. Electrophoretic behavior of DNA-methyl-CpG-binding domain protein complexes revealed by capillary electrophoreses laser-induced fluorescence. Electrophoresis 2015; 36:3088-93. [DOI: 10.1002/elps.201500336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Shangwei Zhong
- College of Chemistry and Chemical Engineering; University of Chinese Academy of Sciences; Beijing P. R. China
| | - Dandan Zou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing P. R. China
| | - Bailin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing P. R. China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing P. R. China
| | - Xiangjun Li
- College of Chemistry and Chemical Engineering; University of Chinese Academy of Sciences; Beijing P. R. China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|