1
|
K. Raval P, MacLeod AI, Gould SB. A molecular atlas of plastid and mitochondrial proteins reveals organellar remodeling during plant evolutionary transitions from algae to angiosperms. PLoS Biol 2024; 22:e3002608. [PMID: 38713727 PMCID: PMC11135702 DOI: 10.1371/journal.pbio.3002608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/29/2024] [Accepted: 03/28/2024] [Indexed: 05/09/2024] Open
Abstract
Algae and plants carry 2 organelles of endosymbiotic origin that have been co-evolving in their host cells for more than a billion years. The biology of plastids and mitochondria can differ significantly across major lineages and organelle changes likely accompanied the adaptation to new ecological niches such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic (Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in plastid and mitochondrial biology across 1 billion years of evolution. Taking into account 331,571 protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-bearing eukaryotes. The 1,906 and 825 protein families are predicted to operate in plastids and mitochondria, respectively. Tracing the evolutionary history of these protein families through evolutionary time uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses of gained orthogroups identifies molecular changes of organelle biology that connect to the diversification of major lineages and facilitated major transitions from chlorophytes en route to the global greening and origin of angiosperms.
Collapse
Affiliation(s)
- Parth K. Raval
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander I. MacLeod
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Steiner P, Buchner O, Andosch A, Holzinger A, Lütz-Meindl U, Neuner G. Winter survival of the unicellular green alga Micrasterias denticulata: insights from field monitoring and simulation experiments. PROTOPLASMA 2021; 258:1335-1346. [PMID: 34304308 PMCID: PMC8523418 DOI: 10.1007/s00709-021-01682-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Peat bog pools around Tamsweg (Lungau, Austria) are typical habitats of the unicellular green alga Micrasterias denticulata. By measurement of water temperature and irradiation throughout a 1-year period (2018/2019), it was intended to assess the natural environmental strain in winter. Freezing resistance of Micrasterias cells and their ability to frost harden and become tolerant to ice encasement were determined after natural hardening and exposure to a cold acclimation treatment that simulated the natural temperature decrease in autumn. Transmission electron microscopy (TEM) was performed in laboratory-cultivated cells, after artificial cold acclimation treatment and in cells collected from field. Throughout winter, the peat bog pools inhabited by Micrasterias remained unfrozen. Despite air temperature minima down to -17.3 °C, the water temperature was mostly close to +0.8 °C. The alga was unable to frost harden, and upon ice encasement, the cells showed successive frost damage. Despite an unchanged freezing stress tolerance, significant ultrastructural changes were observed in field-sampled cells and in response to the artificial cold acclimation treatment: organelles such as the endoplasmic reticulum and thylakoids of the chloroplast showed distinct membrane bloating. Still, in the field samples, the Golgi apparatus appeared in an impeccable condition, and multivesicular bodies were less frequently observed suggesting a lower overall stress strain. The observed ultrastructural changes in winter and after cold acclimation are interpreted as cytological adjustments to winter or a resting state but are not related to frost hardening as Micrasterias cells were unable to improve their freezing stress tolerance.
Collapse
Affiliation(s)
- Philip Steiner
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Institute of Pharmacology, University of Linz, Huemerstrasse 3-5, 4020, Linz, Austria
| | - Othmar Buchner
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Ancuela Andosch
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Ursula Lütz-Meindl
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Gilbert Neuner
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| |
Collapse
|
3
|
Steiner P, Buchner O, Andosch A, Wanner G, Neuner G, Lütz-Meindl U. Fusion of Mitochondria to 3-D Networks, Autophagy and Increased Organelle Contacts are Important Subcellular Hallmarks during Cold Stress in Plants. Int J Mol Sci 2020; 21:E8753. [PMID: 33228190 PMCID: PMC7699614 DOI: 10.3390/ijms21228753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/25/2022] Open
Abstract
Low temperature stress has a severe impact on the distribution, physiology, and survival of plants in their natural habitats. While numerous studies have focused on the physiological and molecular adjustments to low temperatures, this study provides evidence that cold induced physiological responses coincide with distinct ultrastructural alterations. Three plants from different evolutionary levels and habitats were investigated: The freshwater alga Micrasterias denticulata, the aquatic plant Lemna sp., and the nival plant Ranunculus glacialis. Ultrastructural alterations during low temperature stress were determined by the employment of 2-D transmission electron microscopy and 3-D reconstructions from focused ion beam-scanning electron microscopic series. With decreasing temperatures, increasing numbers of organelle contacts and particularly the fusion of mitochondria to 3-dimensional networks were observed. We assume that the increase or at least maintenance of respiration during low temperature stress is likely to be based on these mitochondrial interconnections. Moreover, it is shown that autophagy and degeneration processes accompany freezing stress in Lemna and R. glacialis. This might be an essential mechanism to recycle damaged cytoplasmic constituents to maintain the cellular metabolism during freezing stress.
Collapse
Affiliation(s)
- Philip Steiner
- Department of Biosciences, Faculty of Natural Sciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria; (O.B.); (A.A.); (U.L.-M.)
| | - Othmar Buchner
- Department of Biosciences, Faculty of Natural Sciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria; (O.B.); (A.A.); (U.L.-M.)
| | - Ancuela Andosch
- Department of Biosciences, Faculty of Natural Sciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria; (O.B.); (A.A.); (U.L.-M.)
| | - Gerhard Wanner
- Ultrastructural Research, Department Biology I, Faculty of Biology, Ludwig-Maximilians-University, Großhadernerstraße 2−4, Planegg-Martinsried, D-82152 Munich, Germany;
| | - Gilbert Neuner
- Department of Botany, Functional Plant Biology, Faculty of Biology, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria;
| | - Ursula Lütz-Meindl
- Department of Biosciences, Faculty of Natural Sciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria; (O.B.); (A.A.); (U.L.-M.)
| |
Collapse
|
4
|
Stamenković M, Steinwall E, Nilsson AK, Wulff A. Fatty acids as chemotaxonomic and ecophysiological traits in green microalgae (desmids, Zygnematophyceae, Streptophyta): A discriminant analysis approach. PHYTOCHEMISTRY 2020; 170:112200. [PMID: 31756679 DOI: 10.1016/j.phytochem.2019.112200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/26/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Desmids (Zygnematophyceae) are a group of poorly studied green microalgae. The aim of the present study was to identify fatty acids (FAs) that could be used as biomarkers in desmids in general, and to determine FAs as traits within different ecophysiological desmid groups. FA profiles of 29 desmid strains were determined and analysed with respect to their geographic origin, trophic preference and age of cultivation. It appeared that merely FAs present in relatively large proportions such as palmitic, linoleic, α-linolenic and hexadecatrienoic acids could be used as biomarkers for reliable categorization of this microalgal group. Linear discriminant analysis applied to three a priori defined groups of desmids, revealed clear strain-specific characteristics regarding FA distribution, influenced by climate and trophic conditions at the source sites as well as by the age of culture and growth phase. Accordingly, when considering FAs for the determination of lower taxonomic ranks we recommend using the term "trait" instead of "biomarker", as the latter designates unchangeable "fingerprint" of a specific taxon. Furthermore, despite that desmids were regarded as microalgae having stable genomes, long-term cultivation appeared to cause modifications in FA metabolic pathways, evident as a larger proportion of stearidonic acid in desmid strains cultivated over extensive time periods (>35 years).
Collapse
Affiliation(s)
- Marija Stamenković
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE40530, Göteborg, Sweden; Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Elin Steinwall
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE40530, Göteborg, Sweden
| | - Anders K Nilsson
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia; Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Angela Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE40530, Göteborg, Sweden
| |
Collapse
|
5
|
Holzinger A, Albert A, Aigner S, Uhl J, Schmitt-Kopplin P, Trumhová K, Pichrtová M. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes. PROTOPLASMA 2018; 255:1239-1252. [PMID: 29470709 PMCID: PMC5994220 DOI: 10.1007/s00709-018-1225-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/08/2018] [Indexed: 05/13/2023]
Abstract
Species of Zygnema form macroscopically visible mats in polar and temperate terrestrial habitats, where they are exposed to environmental stresses. Three previously characterized isolates (Arctic Zygnema sp. B, Antarctic Zygnema sp. C, and temperate Zygnema sp. S) were tested for their tolerance to experimental UV radiation. Samples of young vegetative cells (1 month old) and pre-akinetes (6 months old) were exposed to photosynthetically active radiation (PAR, 400-700 nm, 400 μmol photons m-2 s-1) in combination with experimental UV-A (315-400 nm, 5.7 W m-2, no UV-B), designated as PA, or UV-A (10.1 W m-2) + UV-B (280-315 nm, 1.0 W m-2), designated as PAB. The experimental period lasted for 74 h; the radiation period was 16 h PAR/UV-A per day, or with additional UV-B for 14 h per day. The effective quantum yield, generally lower in pre-akinetes, was mostly reduced during the UV treatment, and recovery was significantly higher in young vegetative cells vs. pre-akinetes during the experiment. Analysis of the deepoxidation state of the xanthophyll-cycle pigments revealed a statistically significant (p < 0.05) increase in Zygnema spp. C and S. The content of UV-absorbing phenolic compounds was significantly higher (p < 0.05) in young vegetative cells compared to pre-akinetes. In young vegetative Zygnema sp. S, these phenolic compounds significantly increased (p < 0.05) upon PA and PAB. Transmission electron microscopy showed an intact ultrastructure with massive starch accumulations at the pyrenoids under PA and PAB. A possible increase in electron-dense bodies in PAB-treated cells and the occurrence of cubic membranes in the chloroplasts are likely protection strategies. Metabolite profiling by non-targeted RP-UHPLC-qToF-MS allowed a clear separation of the strains, but could not detect changes due to the PA and PAB treatments. Six hundred seventeen distinct molecular masses were detected, of which around 200 could be annotated from databases. These results indicate that young vegetative cells can adapt better to the experimental UV-B stress than pre-akinetes.
Collapse
Affiliation(s)
- Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Siegfried Aigner
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Jenny Uhl
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Kateřina Trumhová
- Faculty of Science, Department of Botany, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Martina Pichrtová
- Faculty of Science, Department of Botany, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| |
Collapse
|
6
|
The Separation of Microalgae Using Dean Flow in a Spiral Microfluidic Device. INVENTIONS 2018. [DOI: 10.3390/inventions3030040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Zhan T, Lv W, Deng Y. Multilayer gyroid cubic membrane organization in green alga Zygnema. PROTOPLASMA 2017; 254:1923-1930. [PMID: 28176001 DOI: 10.1007/s00709-017-1083-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 05/26/2023]
Abstract
Biological cubic membranes (CM), which are fluid membranes draped onto the 3D periodic parallel surface geometries with cubic symmetry, have been observed within subcellular organelles, including mitochondria, endoplasmic reticulum, and thylakoids. CM transition tends to occur under various stress conditions; however, multilayer CM organizations often appear associated with light stress conditions. This report is about the characterization of a projected gyroid CM in a transmission electron microscopy study of the chloroplast membranes within green alga Zygnema (LB923) whose lamellar form of thylakoid membrane started to fold into multilayer gyroid CM in the culture at the end of log phase of cell growth. Using the techniques of computer simulation of transmission electron microscopy (TEM) and a direct template matching method, we show that these CM are based on the gyroid parallel surfaces. The single, double, and multilayer gyroid CM morphologies are observed in which space is continuously divided into two, three, and more subvolumes by either one, two, or several parallel membranes. The gyroid CM are continuous with varying amount of pseudo-grana with lamellar-like morphology. The relative amount and order of these two membrane morphologies seem to vary with the age of cell culture and are insensitive to ambient light condition. In addition, thylakoid gyroid CM continuously interpenetrates the pyrenoid body through stalk, bundle-like, morphologies. Inside the pyrenoid body, the membranes re-folded into gyroid CM. The appearance of these CM rearrangements due to the consequence of Zygnema cell response to various types of environmental stresses will be discussed. These stresses include nutrient limitation, temperature fluctuation, and ultraviolet (UV) exposure.
Collapse
Affiliation(s)
- Ting Zhan
- Institute of Biomaterials and Engineering, Wenzhou Medical University, Zhejiang, 325035, People's Republic of China
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Zhejiang, 325001, People's Republic of China
| | - Wenhua Lv
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Zhejiang, 325001, People's Republic of China
| | - Yuru Deng
- Institute of Biomaterials and Engineering, Wenzhou Medical University, Zhejiang, 325035, People's Republic of China.
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Zhejiang, 325001, People's Republic of China.
| |
Collapse
|
8
|
Herburger K, Karsten U, Holzinger A. Entransia and Hormidiella, sister lineages of Klebsormidium (Streptophyta), respond differently to light, temperature, and desiccation stress. PROTOPLASMA 2016; 253:1309-23. [PMID: 26439247 PMCID: PMC4710678 DOI: 10.1007/s00709-015-0889-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/21/2015] [Indexed: 05/22/2023]
Abstract
The green-algal class Klebsormidiophyceae (Streptophyta), which occurs worldwide, comprises the genera Klebsormidium, Interfilum, Entransia, and Hormidiella. Ecophysiological research has so far focused on the first two genera because they are abundant in biological soil crust communities. The present study investigated the photosynthetic performances of Hormidiella attenuata and two strains of Entransia fimbriata under light, temperature, and desiccation stress. Their ultrastructure was compared using transmission electron microscopy. The two Entransia strains showed similar physiological responses. They used light more efficiently than Hormidiella, as indicated by higher oxygen production and relative electron transport rate under low light conditions, lower light saturation and compensation points, and higher maximum oxygen production during light saturation. Their requirement for low light levels explains the restriction of Entransia to dim limnetic habitats. In contrast, Hormidiella, which prefers drier soil habitats, responded to light gradients similarly to other aero-terrestrial green algae. Compared to Entransia, Hormidiella was less affected by short-term desiccation, and rehydration allowed full recovery of the photosynthetic performance. Nevertheless, both strains of Entransia coped with low water availability better than other freshwater algae. Photosynthetic oxygen production in relation to respiratory consumption was higher in low temperatures (Entransia: 5 °C, Hormidiella: 10 °C) and the ratio decreased with increasing temperatures. Hormidiella exhibited conspicuous triangular spaces in the cell wall corners, which were filled either with undulating cell wall material or with various inclusions. These structures are commonly seen in various members of Klebsormidiophyceae. The data revealed significant differences between Hormidiella and Entransia, but appropriate adaptations to their respective habitats.
Collapse
Affiliation(s)
- Klaus Herburger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Domozych DS, Popper ZA, Sørensen I. Charophytes: Evolutionary Giants and Emerging Model Organisms. FRONTIERS IN PLANT SCIENCE 2016; 7:1470. [PMID: 27777578 PMCID: PMC5056234 DOI: 10.3389/fpls.2016.01470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/15/2016] [Indexed: 05/20/2023]
Abstract
Charophytes are the group of green algae whose ancestral lineage gave rise to land plants in what resulted in a profoundly transformative event in the natural history of the planet. Extant charophytes exhibit many features that are similar to those found in land plants and their relatively simple phenotypes make them efficacious organisms for the study of many fundamental biological phenomena. Several taxa including Micrasterias, Penium, Chara, and Coleochaete are valuable model organisms for the study of cell biology, development, physiology and ecology of plants. New and rapidly expanding molecular studies are increasing the use of charophytes that in turn, will dramatically enhance our understanding of the evolution of plants and the adaptations that allowed for survival on land. The Frontiers in Plant Science series on "Charophytes" provides an assortment of new research reports and reviews on charophytes and their emerging significance as model plants.
Collapse
Affiliation(s)
- David S. Domozych
- Department of Biology, Skidmore College, Saratoga SpringsNY, USA
- *Correspondence: David S. Domozych,
| | - Zoë A. Popper
- Botany and Plant Science, School of Natural Science, National University of IrelandGalway, Ireland
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, IthacaNY, USA
| |
Collapse
|