1
|
Li X, Gao M, Guo Y, Zhang Z, Zhang Z, Chi L, Qu Z, Wang L, Huang R. 6-Benzyladenine alleviates NaCl stress in watermelon ( Citrullus lanatus) seedlings by improving photosynthesis and upregulating antioxidant defences. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:230-241. [PMID: 36456536 DOI: 10.1071/fp22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Soil salinity is a growing problem in agriculture, plant growth regulators (PGRs) can regulate plant response to stress. The objective of this study was to evaluate the effects of exogenous 6-benzyladenine (6-BA) on photosynthetic capacity and antioxidant defences in watermelon (Citrullus lanatus L.) seedlings under NaCl stress. Two watermelon genotypes were subjected to four different treatments: (1) normal water (control); (2) 20mgL-1 6-BA; (3) 120mmolL-1 NaCl; and (4) 120mmolL-1 NaCl+20mgL-1 6-BA. Our results showed that NaCl stress inhibited the growth of watermelon seedlings, decreased their photosynthetic capacity, promoted membrane lipid peroxidation, and lowered the activity of protective enzymes. Additionally the salt-tolerant Charleston Gray variety fared better than the salt-sensitive Zhengzi NO.017 variety under NaCl stress. Foliar spraying of 6-BA under NaCl stress significantly increased biomass accumulation, as well as photosynthetic pigment, soluble sugar, and protein content, while decreasing malondialdehyde levels, H2 O2 content, and electrolyte leakage. Moreover, 6-BA enhanced photosynthetic parameters, including net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate; activated antioxidant enzymes, such as superoxide dismutase, catalase, and peroxidase; and improved the efficiency of the ascorbate-glutathione cycle by stimulating glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase, as well as ascorbic acid and glutathione content. Principal component analysis confirmed that 6-BA improved salt tolerance of the two watermelon varieties, particularly Zhengzi NO.017, albeit through two different regulatory mechanisms. In conclusion, 6-BA treatment could alleviate NaCl stress-induced damage and improve salt tolerance of watermelons by regulating photosynthesis and osmoregulation, activating the ascorbate-glutathione cycle, and promoting antioxidant defences.
Collapse
Affiliation(s)
- Xinyuan Li
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, P. R. China
| | - Meiling Gao
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, P. R. China
| | - Yu Guo
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, P. R. China
| | - Ziwei Zhang
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, P. R. China
| | - Zhaomin Zhang
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, P. R. China
| | - Li Chi
- Qiqihar Branch of Heilongjiang Academy of Agriculture Sciences, Qiqihar 161006, P. R. China
| | - Zhongcheng Qu
- Qiqihar Branch of Heilongjiang Academy of Agriculture Sciences, Qiqihar 161006, P. R. China
| | - Lei Wang
- Qiqihar Ecological Environment Comprehensive Service Guarantee Center, Qiqihar 161006, P. R. China
| | - Rongyan Huang
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, P. R. China
| |
Collapse
|
2
|
Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int J Mol Sci 2020; 21:ijms21228695. [PMID: 33218014 PMCID: PMC7698618 DOI: 10.3390/ijms21228695] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
- Correspondence: (M.H.); (M.F.)
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Tasnim Farha Bhuiyan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | | | - Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Md. Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
3
|
Gao Z, Shen W, Chen G. Uncovering C4-like photosynthesis in C3 vascular cells. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3531-3540. [PMID: 29684188 DOI: 10.1093/jxb/ery155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
In C4 plants, the vascularization of the leaf is extended to include a ring of photosynthetic bundle sheath cells, which have essential and specific functions. In contrast to the substantial knowledge of photosynthesis in C4 plants, relatively little is known about photosynthesis in C3 plant veins, which differs substantially from that in C3 mesophyll cells. In this review we highlight the specific photosynthetic machinery present in C3 vascular cells, which likely evolved prior to the divergence between C3 and C4 plants. The associated primary processes of carbon recapture, nitrogen transport, and antioxidant metabolism are discussed. This review of the basal C4 photosynthesis in C3 plants is significant in the context of promoting the potential for biotechnological development of C4-transgenic rice crops.
Collapse
Affiliation(s)
- Zhiping Gao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Weijun Shen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guoxiang Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Zhu X, Pan L, Xiao T, Ren X, Liu Z. Exogenous niacin treatment increases NADPH oxidase in kiwifruit. BRAZ J BIOL 2018; 78:686-690. [PMID: 29412249 DOI: 10.1590/1519-6984.173709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/27/2017] [Indexed: 11/22/2022] Open
Abstract
Kiwifruit are a popular fruit worldwide; however, plant growth is threatened by abiotic stresses such as drought and high temperatures. Niacin treatment in plants has been shown to increase NADPH levels, thus enhancing abiotic stresses tolerance. Here, we evaluate the effect of niacin solution spray treatment on NADPH levels in the kiwifruit cultivars Hayward and Xuxiang. We found that spray treatment with niacin solution promoted NADPH and NADP+ levels and decreased both O2·- production and H2O2 contents in leaves during a short period. In fruit, NADPH contents increased during early development, but decreased later. However, no effect on NADP+ levels has been observed throughout fruit development. In summary, this report suggests that niacin may be used to increase NADPH oxidases, thus increasing stress-tolerance in kiwifruit during encounter of short-term stressful conditions.
Collapse
Affiliation(s)
- X Zhu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Institute of Economic Crop Research, Shiyan Academy of Agricultural Sciences, Shiyan, 442714, Hubei, China
| | - L Pan
- Institute of Economic Crop Research, Shiyan Academy of Agricultural Sciences, Shiyan, 442714, Hubei, China
| | - T Xiao
- Institute of Economic Crop Research, Shiyan Academy of Agricultural Sciences, Shiyan, 442714, Hubei, China
| | - X Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Z Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
5
|
Ma J, Lv C, Xu M, Chen G, Lv C, Gao Z. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1768-78. [PMID: 26396015 DOI: 10.1007/s11356-015-5439-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/15/2015] [Indexed: 05/03/2023]
Abstract
The present study was conducted to examine the effects of increasing concentrations of chromium (Cr(6+)) (0, 25, 50, 100, and 200 μmol) on rice (Oryza sativa L.) morphological traits, photosynthesis performance, and the activities of antioxidative enzymes. In addition, the ultrastructure of chloroplasts in the leaves of hydroponically cultivated rice (O. sativa L.) seedlings was analyzed. Plant fresh and dry weights, height, root length, and photosynthetic pigments were decreased by Cr-induced toxicity (200 μM), and the growth of rice seedlings was starkly inhibited compared with that of the control. In addition, the decreased maximum quantum yield of primary photochemistry (Fv/Fm) might be ascribed to the decreased the number of active photosystem II reaction centers. These results were confirmed by inhibited photophosphorylation, reduced ATP content and its coupling factor Ca(2+)-ATPase, and decreased Mg(2+)-ATPase activities. Furthermore, overtly increased activities of antioxidative enzymes were observed under Cr(6+) toxicity. Malondialdehyde and the generation rates of superoxide (O2̄) also increased with Cr(6+) concentration, while hydrogen peroxide content first increased at a low Cr(6+) concentration of 25 μM and then decreased. Moreover, transmission electron microscopy showed that Cr(6+) exposure resulted in significant chloroplast damage. Taken together, these findings indicate that high Cr(6+)concentrations stimulate the production of toxic reactive oxygen species and promote lipid peroxidation in plants, causing severe damage to cell membranes, degradation of photosynthetic pigments, and inhibition of photosynthesis.
Collapse
Affiliation(s)
- Jing Ma
- Jiangsu Key Lab of Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, Jiangsu, China
| | - Chunfang Lv
- Jiangsu Key Lab of Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, Jiangsu, China
| | - Minli Xu
- Jiangsu Key Lab of Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, Jiangsu, China
| | - Guoxiang Chen
- Jiangsu Key Lab of Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, Jiangsu, China
| | - Chuangen Lv
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Zhiping Gao
- Jiangsu Key Lab of Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|