Višnjar T, Jerman UD, Veranič P, Kreft ME. Chitosan hydrochloride has no detrimental effect on bladder urothelial cancer cells.
Toxicol In Vitro 2017;
44:403-413. [PMID:
28807631 DOI:
10.1016/j.tiv.2017.08.008]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
Abstract
Bladder cancer is among the most common and aggressive human malignant carcinomas, thus targeting and removal of bladder cancer cells is still a challenge. Although it is well known that chitosan hydrochloride (CH-HCl) causes desquamation of normal urothelial cells, its effect on cancer urothelial cells has not been recognized yet. In this in vitro study, we analyzed the cytotoxicity of 0.05% CH-HCl on three urothelial models: two cancer urothelial models, i.e. invasive and papillary urothelial neoplasms, and a normal urothelial model. The cytotoxicity of CH-HCl was evaluated with viability tests, transepithelial resistance (TER) measurements, and electron microscopy. TER measurements showed that 15-minute treatment with CH-HCl caused no reduction in TER of the cancer models, whereas the TER of the normal urothelial model significantly decreased. Furthermore, after CH-HCl treatment, the viability of cancer cells was reduced by only 5%, whereas the viability of normal cells was reduced by 30%. Ultrastructural analysis revealed necrotic cell death in all cases. We have demonstrated that although CH-HCl increases the mortality of cancer urothelial cells, it increases the mortality of normal urothelial cells even more so. However, shorter 2-minute CH-HCl treatment only temporarily increases the permeability of normal urothelial model, i.e. disrupts tight junctions and reduces TER without comprising cell viability, and enables the complete recovery of the permeability barrier after 24h. Overall, our results suggest that CH-HCl cannot be used as a self-sufficient anticancer agent for urothelial bladder cancer treatment; nevertheless a possibility of its use as an enhancer of cytostatic treatment is discussed.
Collapse