1
|
Morozov YM, Rakic P. Lateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors. Cereb Cortex 2024; 34:bhae293. [PMID: 39024157 PMCID: PMC11485267 DOI: 10.1093/cercor/bhae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
The centrosome is the main microtubule organizing center in stem cells, and its mother centriole, anchored to the cell membrane, serves as the basal body of the primary cilium. Prolonged anchorage of centrosomes and primary cilia to the apical segment of the membrane of apical neural progenitor cells is considered vital for interkinetic nuclear translocation and repetitive cycling in the ventricular zone. In contrast, the basolateral anchorage of primary cilia has been regarded as the first step in delamination and conversion of apical to basal neural progenitor cells or neurons. Using electron microscopy analysis of serial sections, we show that centrosomes, in a fraction of cells, anchor to the basolateral cell membrane immediately after cell division and before development of cilia. In other cells, centrosomes situate freely in the cytoplasm, increasing their probability of subsequent apical anchorage. In mice, anchored centrosomes in the cells shortly after mitosis predominate during the entire cerebral neurogenesis, whereas in macaque monkeys, cytoplasmic centrosomes are more numerous. Species-specific differences in the ratio of anchored and free cytoplasmic centrosomes appear to be related to prolonged neurogenesis in the ventricular zone that is essential for lateral expansion of the cerebral cortex in primates.
Collapse
Affiliation(s)
- Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, 333 Cedar Street, SHM, C-303, New Haven, CT 06510, United States
| |
Collapse
|
2
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
3
|
Anderson EB, Mao Q, Ho RK. Tbx5a and Tbx5b paralogues act in combination to control separate vectors of migration in the fin field of zebrafish. Dev Biol 2022; 481:201-214. [PMID: 34756968 PMCID: PMC8665139 DOI: 10.1016/j.ydbio.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 01/03/2023]
Abstract
The T-box containing family member, TBX5, has been shown to play important functional roles in the pectoral appendages of a variety of vertebrate species. While a single TBX5 gene exists in all tetrapods studied to date, the zebrafish genome retains two paralogues, designated as tbx5a and tbx5b, resulting from a whole genome duplication in the teleost lineage. Zebrafish deficient in tbx5a lack pectoral fin buds, whereas zebrafish deficient in tbx5b exhibit misshapen pectoral fins, showing that both paralogues function in fin development. The mesenchymal cells of the limb/fin bud are derived from the Lateral Plate Mesoderm (LPM). Previous fate mapping work in zebrafish has shown that wildtype (wt) fin field cells are initially located adjacent to somites (s)1-4. The wt fin field cells migrate in opposing diagonal directions placing the limb bud between s2-3 and lateral to the main body. To better characterize tbx5 paralogue functions in zebrafish, time-lapse analyses of the migrations of fin bud precursors under conditions of tbx5a knock-down, tbx5b knock-down and double-knock-down were performed. Our data suggest that zebrafish tbx5a and tbx5b have functionally separated migration direction vectors, that when combined recapitulate the migration of the wt fin field. We and others have shown that loss of Tbx5a function abolishes an fgf24 signaling cue resulting in fin field cells failing to converge in an Antero-Posterior (AP) direction and migrating only in a mediolateral (ML) direction. We show here that loss of Tbx5b function affects initial ML directed movements so that fin field cells fail to migrate laterally but continue to converge along the AP axis. Furthermore, fin field cells in the double Tbx5a/Tbx5b knock-down zebrafish do not engage in directed migrations along either the ML or AP axis. Therefore, these two paralogues may be acting to instruct separate vectors of fin field migration in order to direct proper fin bud formation.
Collapse
Affiliation(s)
- Erin Boyle Anderson
- Committee on Development, Regeneration and Stem Cell Biology; University of Chicago, Chicago, IL
| | - Qiyan Mao
- Committee on Development, Regeneration and Stem Cell Biology; University of Chicago, Chicago, IL,present address: Universite de Aix-Marseille; Marseille, France
| | - Robert K. Ho
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| |
Collapse
|
4
|
Möller K, Brambach M, Villani A, Gallo E, Gilmour D, Peri F. A role for the centrosome in regulating the rate of neuronal efferocytosis by microglia in vivo. eLife 2022; 11:82094. [PMID: 36398880 PMCID: PMC9674339 DOI: 10.7554/elife.82094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
During brain development, many newborn neurons undergo apoptosis and are engulfed by microglia, the tissue-resident phagocytes of the brain, in a process known as efferocytosis. A hallmark of microglia is their highly branched morphology characterized by the presence of numerous dynamic extensions that these cells use for scanning the brain parenchyma and engulfing unwanted material. The mechanisms driving branch formation and apoptotic cell engulfment in microglia are unclear. By taking a live-imaging approach in zebrafish, we show that while microglia generate multiple microtubule-based branches, they only successfully engulf one apoptotic neuron at a time. Further investigation into the mechanism underlying this sequential engulfment revealed that targeted migration of the centrosome into one branch is predictive of phagosome formation and polarized vesicular trafficking. Moreover, experimentally doubling centrosomal numbers in microglia increases the rate of engulfment and even allows microglia to remove two neurons simultaneously, providing direct supporting evidence for a model where centrosomal migration is a rate-limiting step in branch-mediated efferocytosis. Conversely, light-mediated depolymerization of microtubules causes microglia to lose their typical branched morphology and switch to an alternative mode of engulfment, characterized by directed migration towards target neurons, revealing unexpected plasticity in their phagocytic ability. Finally, building on work focusing on the establishment of the immunological synapse, we identified a conserved signalling pathway underlying centrosomal movement in engulfing microglia.
Collapse
Affiliation(s)
- Katrin Möller
- Department of Molecular Life Sciences, University of ZürichZürichSwitzerland
| | - Max Brambach
- Department of Molecular Life Sciences, University of ZürichZürichSwitzerland
| | - Ambra Villani
- Department of Molecular Life Sciences, University of ZürichZürichSwitzerland
| | - Elisa Gallo
- Department of Molecular Life Sciences, University of ZürichZürichSwitzerland
| | - Darren Gilmour
- Department of Molecular Life Sciences, University of ZürichZürichSwitzerland
| | - Francesca Peri
- Department of Molecular Life Sciences, University of ZürichZürichSwitzerland
| |
Collapse
|
5
|
Abstract
Mitochondria are multifunctional organelles that not only produce energy for the cell, but are also important for cell signalling, apoptosis and many biosynthetic pathways. In most cell types, they form highly dynamic networks that are constantly remodelled through fission and fusion events, repositioned by motor-dependent transport and degraded when they become dysfunctional. Motor proteins and their tracks are key regulators of mitochondrial homeostasis, and in this Review, we discuss the diverse functions of the three classes of motor proteins associated with mitochondria - the actin-based myosins, as well as the microtubule-based kinesins and dynein. In addition, Miro and TRAK proteins act as adaptors that link kinesin-1 and dynein, as well as myosin of class XIX (MYO19), to mitochondria and coordinate microtubule- and actin-based motor activities. Here, we highlight the roles of motor proteins and motor-linked track dynamics in the transporting and docking of mitochondria, and emphasize their adaptations in specialized cells. Finally, we discuss how motor-cargo complexes mediate changes in mitochondrial morphology through fission and fusion, and how they modulate the turnover of damaged organelles via quality control pathways, such as mitophagy. Understanding the importance of motor proteins for mitochondrial homeostasis will help to elucidate the molecular basis of a number of human diseases.
Collapse
Affiliation(s)
- Antonina J Kruppa
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
6
|
Burakov AV, Nadezhdina ES. Centering and Shifting of Centrosomes in Cells. Cells 2020; 9:E1351. [PMID: 32485978 PMCID: PMC7348834 DOI: 10.3390/cells9061351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Centrosomes have a nonrandom localization in the cells: either they occupy the centroid of the zone free of the actomyosin cortex or they are shifted to the edge of the cell, where their presence is justified from a functional point of view, for example, to organize additional microtubules or primary cilia. This review discusses centrosome placement options in cultured and in situ cells. It has been proven that the central arrangement of centrosomes is due mainly to the pulling microtubules forces developed by dynein located on the cell cortex and intracellular vesicles. The pushing forces from dynamic microtubules and actomyosin also contribute, although the molecular mechanisms of their action have not yet been elucidated. Centrosomal displacement is caused by external cues, depending on signaling, and is drawn through the redistribution of dynein, the asymmetrization of microtubules through the capture of their plus ends, and the redistribution of actomyosin, which, in turn, is associated with basal-apical cell polarization.
Collapse
Affiliation(s)
- Anton V. Burakov
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Elena S. Nadezhdina
- Institute of Protein Research of Russian Academy of Science, Pushchino, 142290 Moscow Region, Russia
| |
Collapse
|
7
|
Araújo SJ. Centrosomes in Branching Morphogenesis. Results Probl Cell Differ 2019; 67:323-336. [PMID: 31435801 DOI: 10.1007/978-3-030-23173-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The centrosome, a major microtubule organizer, has important functions in regulating the cytoskeleton as well as the position of cellular structures and orientation of cells within tissues. The centrosome serves as the main cytoskeleton-organizing centre in the cell and is the classical site of microtubule nucleation and anchoring. For these reasons, centrosomes play a very important role in morphogenesis, not just in the early stages of cell divisions but also in the later stages of organogenesis. Many organs such as lung, kidney and blood vessels develop from epithelial tubes that branch into complex networks. Cells in the nervous system also form highly branched structures in order to build complex neuronal networks. During branching morphogenesis, cells have to rearrange within tissues though multicellular branching or through subcellular branching, also known as single-cell branching. For highly branched structures to be formed during embryonic development, the cytoskeleton needs to be extensively remodelled. The centrosome has been shown to play an important role during these events.
Collapse
Affiliation(s)
- Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Gillingham AK, Bertram J, Begum F, Munro S. In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation. eLife 2019; 8:45916. [PMID: 31294692 PMCID: PMC6639074 DOI: 10.7554/elife.45916] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.
Collapse
Affiliation(s)
| | - Jessie Bertram
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Farida Begum
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
9
|
Hakanen J, Ruiz-Reig N, Tissir F. Linking Cell Polarity to Cortical Development and Malformations. Front Cell Neurosci 2019; 13:244. [PMID: 31213986 PMCID: PMC6558068 DOI: 10.3389/fncel.2019.00244] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
Cell polarity refers to the asymmetric distribution of signaling molecules, cellular organelles, and cytoskeleton in a cell. Neural progenitors and neurons are highly polarized cells in which the cell membrane and cytoplasmic components are compartmentalized into distinct functional domains in response to internal and external cues that coordinate polarity and behavior during development and disease. In neural progenitor cells, polarity has a prominent impact on cell shape and coordinate several processes such as adhesion, division, and fate determination. Polarity also accompanies a neuron from the beginning until the end of its life. It is essential for development and later functionality of neuronal circuitries. During development, polarity governs transitions between multipolar and bipolar during migration of postmitotic neurons, and directs the specification and directional growth of axons. Once reaching final positions in cortical layers, neurons form dendrites which become compartmentalized to ensure proper establishment of neuronal connections and signaling. Changes in neuronal polarity induce signaling cascades that regulate cytoskeletal changes, as well as mRNA, protein, and vesicle trafficking, required for synapses to form and function. Hence, defects in establishing and maintaining cell polarity are associated with several neural disorders such as microcephaly, lissencephaly, schizophrenia, autism, and epilepsy. In this review we summarize the role of polarity genes in cortical development and emphasize the relationship between polarity dysfunctions and cortical malformations.
Collapse
Affiliation(s)
- Janne Hakanen
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| |
Collapse
|
10
|
Moujaber O, Fishbein F, Omran N, Liang Y, Colmegna I, Presley JF, Stochaj U. Cellular senescence is associated with reorganization of the microtubule cytoskeleton. Cell Mol Life Sci 2019; 76:1169-1183. [PMID: 30599068 PMCID: PMC11105446 DOI: 10.1007/s00018-018-2999-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/12/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Senescent cells undergo structural and functional changes that affect essentially every aspect of cell physiology. To date, the impact of senescence on the cytoskeleton is poorly understood. This study evaluated the cytoskeleton in two independent cellular models of kidney epithelium senescence. Our work identified multiple senescence-related alterations that impact microtubules and filamentous actin during interphase. Both filamentous systems reorganized profoundly when cells became senescent. As such, microtubule stability increased during senescence, making these filaments more resistant to disassembly in the cold or by nocodazole. Microtubule stabilization was accompanied by enhanced α-tubulin acetylation on lysine 40 and the depletion of HDAC6, the major deacetylase for α-tubulin lysine 40. Rho-associated kinase Rock1 is an upstream regulator that modulates key properties of the cytoplasmic cytoskeleton. Our research shows that Rock1 concentrations were reduced significantly in senescent cells, and we revealed a mechanistic link between microtubule stabilization and Rock1 depletion. Thus, Rock1 overexpression partially restored the cold sensitivity of microtubules in cells undergoing senescence. Additional components relevant to microtubules were affected by senescence. Specifically, we uncovered the senescence-related loss of the microtubule nucleating protein γ-tubulin and aberrant formation of γ-tubulin foci. Concomitant with the alterations of microtubule and actin filaments, senescent cells displayed functional changes. In particular, cell migration was impaired significantly in senescent cells. Taken together, our study identified new senescence-associated deficiencies of the microtubule and actin cytoskeleton, provided insights into the underlying molecular mechanisms and demonstrated functional consequences that are important to the physiology and function of renal epithelial cells.
Collapse
Affiliation(s)
- Ossama Moujaber
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Nawal Omran
- Department of Physiology, McGill University, Montreal, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, Canada
| | - Inés Colmegna
- Department of Rheumatology, McGill University, Montreal, Canada
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Canada.
| |
Collapse
|
11
|
Som S, Chatterjee S, Paul R. Mechanistic three-dimensional model to study centrosome positioning in the interphase cell. Phys Rev E 2019; 99:012409. [PMID: 30780383 DOI: 10.1103/physreve.99.012409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 01/28/2023]
Abstract
During the interphase in mammalian cells, the position of the centrosome is actively maintained at a small but finite distance away from the nucleus. The perinuclear positioning of the centrosome is crucial for cellular trafficking and progression into mitosis. Although the literature suggests that the contributions of the microtubule-associated forces bring the centrosome to the center of the cell, the position of the centrosome was merely investigated in the absence of the nucleus. Upon performing a coarse-grained simulation study with mathematical analysis, we show that the combined effect of the forces due to the cell cortex and the nucleus facilitate the centrosome positioning. Our study also demonstrates that in the absence of nucleus-based forces, the centrosome collapses on the nucleus due to cortical forces. Depending upon the magnitudes of the cortical forces and the nucleus-based forces, the centrosome appears to stay at various distances away from the nucleus. Such null force regions are found to be stable as well as unstable fixed points. This study uncovers a set of redundant schemes that the cell may adopt to produce the required cortical and nucleus-based forces stabilizing the centrosome at a finite distance away from the nucleus.
Collapse
Affiliation(s)
- Subhendu Som
- Indian Association for the Cultivation of Science, Kolkata - 700032, India
| | | | - Raja Paul
- Indian Association for the Cultivation of Science, Kolkata - 700032, India
| |
Collapse
|
12
|
Kimura M, Takagi S, Nakashima S. Aurora A regulates the architecture of the Golgi apparatus. Exp Cell Res 2018; 367:73-80. [PMID: 29571950 DOI: 10.1016/j.yexcr.2018.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Abstract
The Golgi apparatus plays roles in cell polarity, directional cell migration, and bipolar spindle assembly, as well as the secretary pathway. In addition, recent studies have suggested the Golgi-dependent control of mitotic entry. We studied the role of the centrosomal kinase Aurora A in maintaining the Golgi apparatus. Knockdown of Aurora A resulted in Golgi dispersal during interphase. Golgi dispersal was also induced by a selective Aurora A inhibitor, MLN8237. Conversely, overexpression of Aurora A led to tightly packed Golgi apparatus during interphase. Knockdown or inhibition of Aurora A had little or no effect on Golgi vesiculation during mitosis. By synchronizing cell division, we studied whether mitosis was required to induce Golgi dispersal during interphase. Aurora A inhibition induced aberrant mitotic spindle and Golgi dispersal only after mitosis. However, the cells treated with the inhibitor MLN8237 at earlier cell cycle stages (wherein the cells remained undivided) had a normal Golgi architecture. Knockdown or inhibition of Aurora A also led to aberrant integrity of centrosome and Golgi apparatus during interphase. These results suggest that Aurora A activity is involved in the maintenance of Golgi architecture and the relationship between the Golgi apparatus and centrosome.
Collapse
Affiliation(s)
- Masashi Kimura
- Department of Cell Signaling, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501 1194, Japan.
| | - Shuta Takagi
- Department of Cell Signaling, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501 1194, Japan
| | - Shigeru Nakashima
- Department of Cell Signaling, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501 1194, Japan
| |
Collapse
|
13
|
Melkov A, Abdu U. Regulation of long-distance transport of mitochondria along microtubules. Cell Mol Life Sci 2018; 75:163-176. [PMID: 28702760 PMCID: PMC11105322 DOI: 10.1007/s00018-017-2590-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
Abstract
Mitochondria are cellular organelles of crucial importance, playing roles in cellular life and death. In certain cell types, such as neurons, mitochondria must travel long distances so as to meet metabolic demands of the cell. Mitochondrial movement is essentially microtubule (MT) based and is executed by two main motor proteins, Dynein and Kinesin. The organization of the cellular MT network and the identity of motors dictate mitochondrial transport. Tight coupling between MTs, motors, and the mitochondria is needed for the organelle precise localization. Two adaptor proteins are involved directly in mitochondria-motor coupling, namely Milton known also as TRAK, which is the motor adaptor, and Miro, which is the mitochondrial protein. Here, we discuss the active mitochondria transport process, as well as motor-mitochondria coupling in the context of MT organization in different cell types. We focus on mitochondrial trafficking in different cell types, specifically neurons, migrating cells, and polarized epithelial cells.
Collapse
Affiliation(s)
- Anna Melkov
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel.
| |
Collapse
|
14
|
Pitaval A, Senger F, Letort G, Gidrol X, Guyon L, Sillibourne J, Théry M. Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis. J Cell Biol 2017; 216:3713-3728. [PMID: 28993469 PMCID: PMC5674878 DOI: 10.1083/jcb.201610039] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/02/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
The classical view of centrosome decentering and migration to the cell periphery during ciliogenesis is that it is pulled toward its final destination. Here, Pitaval et al. argue that microtubule stabilization in the early stages of ciliogenesis generates pushing forces that propel the centrosome toward the apical pole. Primary cilia are sensory organelles located at the cell surface. Their assembly is primed by centrosome migration to the apical surface, yet surprisingly little is known about this initiating step. To gain insight into the mechanisms driving centrosome migration, we exploited the reproducibility of cell architecture on adhesive micropatterns to investigate the cytoskeletal remodeling supporting it. Microtubule network densification and bundling, with the transient formation of an array of cold-stable microtubules, and actin cytoskeleton asymmetrical contraction participate in concert to drive apical centrosome migration. The distal appendage protein Cep164 appears to be a key actor involved in the cytoskeleton remodeling and centrosome migration, whereas intraflagellar transport 88’s role seems to be restricted to axoneme elongation. Together, our data elucidate the hitherto unexplored mechanism of centrosome migration and show that it is driven by the increase and clustering of mechanical forces to push the centrosome toward the cell apical pole.
Collapse
Affiliation(s)
- Amandine Pitaval
- UMR_S 1038, Biomics Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Santé et de la Recherche, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France.,UMR 5168, CytoMorpho Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France
| | - Fabrice Senger
- UMR 5168, CytoMorpho Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France
| | - Gaëlle Letort
- UMR 5168, CytoMorpho Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France
| | - Xavier Gidrol
- UMR_S 1038, Biomics Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Santé et de la Recherche, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France
| | - Laurent Guyon
- UMR_S 1036, Biologie du Cancer et de l'Infection, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Santé et de la Recherche, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France
| | - James Sillibourne
- UMR 5168, CytoMorpho Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France .,UMRS 1160, CytoMorpho Lab, University Paris Diderot, Institut National de la Santé et de la Recherche, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Manuel Théry
- UMR 5168, CytoMorpho Lab, University Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France .,UMRS 1160, CytoMorpho Lab, University Paris Diderot, Institut National de la Santé et de la Recherche, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| |
Collapse
|
15
|
Mazel T. Crosstalk of cell polarity signaling pathways. PROTOPLASMA 2017; 254:1241-1258. [PMID: 28293820 DOI: 10.1007/s00709-017-1075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.
Collapse
Affiliation(s)
- Tomáš Mazel
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
- State Institute for Drug Control, Šrobárova 48, 100 41, Prague 10, Czech Republic.
| |
Collapse
|
16
|
Maninova M, Caslavsky J, Vomastek T. The assembly and function of perinuclear actin cap in migrating cells. PROTOPLASMA 2017; 254:1207-1218. [PMID: 28101692 DOI: 10.1007/s00709-017-1077-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 05/24/2023]
Abstract
Stress fibers are actin bundles encompassing actin filaments, actin-crosslinking, and actin-associated proteins that represent the major contractile system in the cell. Different types of stress fibers assemble in adherent cells, and they are central to diverse cellular processes including establishment of the cell shape, morphogenesis, cell polarization, and migration. Stress fibers display specific cellular organization and localization, with ventral fibers present at the basal side, and dorsal fibers and transverse actin arcs rising at the cell front from the ventral to the dorsal side and toward the nucleus. Perinuclear actin cap fibers are a specific subtype of stress fibers that rise from the leading edge above the nucleus and terminate at the cell rear forming a dome-like structure. Perinuclear actin cap fibers are fixed at three points: both ends are anchored in focal adhesions, while the central part is physically attached to the nucleus and nuclear lamina through the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we discuss recent work that provides new insights into the mechanism of assembly and the function of these actin stress fibers that directly link extracellular matrix and focal adhesions with the nuclear envelope.
Collapse
Affiliation(s)
- Miloslava Maninova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic
| | - Josef Caslavsky
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Vomastek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
17
|
Nick P. Life breaks symmetry. PROTOPLASMA 2016; 253:965-966. [PMID: 27311980 DOI: 10.1007/s00709-016-0994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Peter Nick
- Molecular Cell Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|