1
|
Wasilewska-Dębowska W, Zienkiewicz M, Drozak A. How Light Reactions of Photosynthesis in C4 Plants Are Optimized and Protected under High Light Conditions. Int J Mol Sci 2022; 23:ijms23073626. [PMID: 35408985 PMCID: PMC8998801 DOI: 10.3390/ijms23073626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Most C4 plants that naturally occur in tropical or subtropical climates, in high light environments, had to evolve a series of adaptations of photosynthesis that allowed them to grow under these conditions. In this review, we summarize mechanisms that ensure the balancing of energy distribution, counteract photoinhibition, and allow the dissipation of excess light energy. They secure effective electron transport in light reactions of photosynthesis, which will lead to the production of NADPH and ATP. Furthermore, a higher content of the cyclic electron transport components and an increase in ATP production are observed, which is necessary for the metabolism of C4 for effective assimilation of CO2. Most of the data are provided by studies of the genus Flaveria, where species belonging to different metabolic subtypes and intermediate forms between C3 and C4 are present. All described mechanisms that function in mesophyll and bundle sheath chloroplasts, into which photosynthetic reactions are divided, may differ in metabolic subtypes as a result of the different organization of thylakoid membranes, as well as the different demand for ATP and NADPH. This indicates that C4 plants have plasticity in the utilization of pathways in which efficient use and dissipation of excitation energy are realized.
Collapse
|
2
|
Fujiwara T, Hirooka S, Miyagishima SY. A cotransformation system of the unicellular red alga Cyanidioschyzon merolae with blasticidin S deaminase and chloramphenicol acetyltransferase selectable markers. BMC PLANT BIOLOGY 2021; 21:573. [PMID: 34863100 PMCID: PMC8642924 DOI: 10.1186/s12870-021-03365-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/24/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND The unicellular red alga Cyanidioschyzon merolae exhibits a very simple cellular and genomic architecture. In addition, procedures for genetic modifications, such as gene targeting by homologous recombination and inducible/repressible gene expression, have been developed. However, only two markers for selecting transformants, uracil synthase (URA) and chloramphenicol acetyltransferase (CAT), are available in this alga. Therefore, manipulation of two or more different chromosomal loci in the same strain in C. merolae is limited. RESULTS This study developed a nuclear targeting and transformant selection system using an antibiotics blasticidin S (BS) and the BS deaminase (BSD) selectable marker by homologous recombination in C. merolae. In addition, this study has succeeded in simultaneously modifying two different chromosomal loci by a single-step cotransformation based on the combination of BSD and CAT selectable markers. A C. merolae strain that expresses mitochondrion-targeted mSCARLET (with the BSD marker) and mVENUS (with the CAT marker) from different chromosomal loci was generated with this procedure. CONCLUSIONS The newly developed BSD selectable marker enables an additional genetic modification to the already generated C. merolae transformants based on the URA or CAT system. Furthermore, the cotransformation system facilitates multiple genetic modifications. These methods and the simple nature of the C. merolae cellular and genomic architecture will facilitate studies on several phenomena common to photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan.
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
3
|
Miyagishima SY, Tanaka K. The Unicellular Red Alga Cyanidioschyzon merolae-The Simplest Model of a Photosynthetic Eukaryote. PLANT & CELL PHYSIOLOGY 2021; 62:926-941. [PMID: 33836072 PMCID: PMC8504449 DOI: 10.1093/pcp/pcab052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 05/13/2023]
Abstract
Several species of unicellular eukaryotic algae exhibit relatively simple genomic and cellular architecture. Laboratory cultures of these algae grow faster than plants and often provide homogeneous cellular populations exposed to an almost equal environment. These characteristics are ideal for conducting experiments at the cellular and subcellular levels. Many microalgal lineages have recently become genetically tractable, which have started to evoke new streams of studies. Among such algae, the unicellular red alga Cyanidioschyzon merolae is the simplest organism; it possesses the minimum number of membranous organelles, only 4,775 protein-coding genes in the nucleus, and its cell cycle progression can be highly synchronized with the diel cycle. These properties facilitate diverse omics analyses of cellular proliferation and structural analyses of the intracellular relationship among organelles. C. merolae cells lack a rigid cell wall and are thus relatively easily disrupted, facilitating biochemical analyses. Multiple chromosomal loci can be edited by highly efficient homologous recombination. The procedures for the inducible/repressive expression of a transgene or an endogenous gene in the nucleus and for chloroplast genome modification have also been developed. Here, we summarize the features and experimental techniques of C. merolae and provide examples of studies using this alga. From these studies, it is clear that C. merolae-either alone or in comparative and combinatory studies with other photosynthetic organisms-can provide significant insights into the biology of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| | - Kan Tanaka
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| |
Collapse
|
4
|
Ichinose TM, Iwane AH. Long-term live cell cycle imaging of single Cyanidioschyzon merolae cells. PROTOPLASMA 2021; 258:651-660. [PMID: 33580410 PMCID: PMC8052221 DOI: 10.1007/s00709-020-01592-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 05/26/2023]
Abstract
Live cell imaging by fluorescence microscopy is a useful tool for elucidating the localization and function of proteins and organelles in single cells. Especially, time-lapse analysis observing the same field sequentially can be used to observe cells of many organisms and analyze the dynamics of intracellular molecules. By single-cell analysis, it is possible to elucidate the characteristics and fluctuations of individual cells, which cannot be elucidated from the data obtained by averaging the characteristics of an ensemble of cells. The primitive red alga Cyanidioschyzon merolae has a very simple structure and is considered a useful model organism for studying the mechanism of organelle division, since the division is performed synchronously with the cell cycle. However, C. merolae does not have a rigid cell wall, and environmental changes such as low temperature or high pH cause morphological change and disruption easily. Therefore, morphological studies of C. merolae typically use fixed cells. In this study, we constructed a long-term time-lapse observation system to analyze the dynamics of proteins in living C. merolae cells. From the results, we elucidate the cell division process of single living cells, including the function of intracellular components.
Collapse
Affiliation(s)
- Takako M Ichinose
- Center for Biosystems Dynamics Research, Laboratory for Cell Field Structure, Riken, 3-10-23, Kagamiyama, Higashihiroshima, 739-0046, Japan
| | - Atsuko H Iwane
- Center for Biosystems Dynamics Research, Laboratory for Cell Field Structure, Riken, 3-10-23, Kagamiyama, Higashihiroshima, 739-0046, Japan.
- Graduate School of Frontier BioScience for Systems Science of Biological Dynamics, Osaka University, 1-3, Suita, 565-0871, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23, Kagamiyama, Higashihiroshima, 739-0046, Japan.
| |
Collapse
|
5
|
Zienkiewicz M, Krupnik T, Drożak A, Kania K. PEG-mediated, Stable, Nuclear and Chloroplast Transformation of Cyanidioschizon merolae. Bio Protoc 2019; 9:e3355. [PMID: 33654854 DOI: 10.21769/bioprotoc.3355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022] Open
Abstract
The ability to achieve nuclear or chloroplast transformation in plants has been a long standing goal, especially in microalgae research. Over past years there has been only little success, but transient and stable nuclear transformation has been achieved in multiple species. Our newly developed method allows for relatively simple transformation of Cyanidioschizon merolae in both nuclear and chloroplast genome by means of homologous recombination between the genome and a transformation vector. The use of chloramphenicol resistance gene as the selectable marker allows for plate-based efficient selection of mutant colonies. Overall, the method allows the generation of mutant strains within 6 months.
Collapse
Affiliation(s)
| | - Tomasz Krupnik
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Drożak
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Kinga Kania
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
6
|
Takemura T, Kobayashi Y, Imamura S, Tanaka K. Top Starch Plating Method for the Efficient Cultivation of Unicellular Red Alga Cyanidioschyzon merolae. Bio Protoc 2019; 9:e3172. [PMID: 33654978 PMCID: PMC7854263 DOI: 10.21769/bioprotoc.3172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
The unicellular red alga Cyanidioschyzon merolae has been used as a model photosynthetic eukaryote for various basic and applied studies, and several of these molecular genetics techniques have been reported. However, there are still improvements to be made concerning the plating method. The conventional plating method often generates diffuse colonies and single colonies cannot be easily isolated. To overcome these problems, we established a novel plating method for C. merolae, making use of melted cornstarch as the use of top agar plating in bacterial genetics. This method improved the formation of defined colonies in at least 4-fold higher efficiency than the conventional method, and made the handling procedure much easier than the previous method.
Collapse
Affiliation(s)
- Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-29, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259-R1-29, Yokohama 226-8503, Japan
| | - Yuki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-29, Yokohama 226-8503, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-29, Yokohama 226-8503, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-29, Yokohama 226-8503, Japan
| |
Collapse
|
7
|
Takemura T, Imamura S, Kobayashi Y, Tanaka K. Construction of a Selectable Marker Recycling System and the Use in Epitope Tagging of Multiple Nuclear Genes in the Unicellular Red Alga Cyanidioschyzon merolae. PLANT & CELL PHYSIOLOGY 2018; 59:2308-2316. [PMID: 30099537 DOI: 10.1093/pcp/pcy156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
The nuclear genome of the unicellular red alga Cyanidioschyzon merolae can be modified by homologous recombination with exogenously introduced DNA. However, it is presently difficult to modify multiple chromosome loci because of the limited number of available positive selectable markers. In this study, we constructed a modified URA5.3 gene (URA5.3T), which can be repeatedly used for nuclear genome transformation, as well as two plasmid vectors for 3× FLAG- or 3× Myc-epitope tagging of nuclear-encoded proteins using URA5.3T. In the URA5.3T marker, the promoter region and open reading frame were located between directly repeated URA5.3 terminator sequences, and the URA5.3 gene can be eliminated by 5-fluoroorotic acid selection through homologous recombination. To demonstrate the utility of the constructed system, a 3× FLAG-tag and 3× Myc-tag were introduced at the C-termini of two of the six Rab proteins in C. merolae, CmRab18 and CmRab7, respectively, and the differential expression levels were successfully monitored by immunoblot analysis using these epitope tags. The URA5.3T marker's introduction and elimination cycle can be repeated. Thus, we have constructed a marker recycling system for C. merolae nuclear transformation. A novel procedure to obtain a high plating efficiency of C. merolae cells on solid gellan gum plates is also presented.
Collapse
Affiliation(s)
- Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Yuki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| |
Collapse
|
8
|
Replication of bacterial plasmids in the nucleus of the red alga Porphyridium purpureum. Nat Commun 2018; 9:3451. [PMID: 30150628 PMCID: PMC6110788 DOI: 10.1038/s41467-018-05651-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/19/2018] [Indexed: 11/25/2022] Open
Abstract
Rhodophytes (red algae) are a diverse group of algae with great ecological and economic importance. However, tools for post-genomic research on red algae are still largely lacking. Here, we report the development of an efficient genetic transformation system for the model rhodophyte Porphyridium purpureum. We show that transgenes can be expressed to unprecedented levels of up to 5% of the total soluble protein. Surprisingly, the transgenic DNA is maintained episomally, as extrachromosomal high-copy number plasmid. The bacterial replication origin confers replication in the algal nucleus, thus providing an intriguing example of a prokaryotic replication origin functioning in a eukaryotic system. The extended presence of bacterial episomal elements may provide an evolutionary explanation for the frequent natural occurrence of extrachromosomal plasmids in red algae, and may also have contributed to the high rate of horizontal gene transfer from bacteria to the nuclear genome of Porphyridium purpureum and other rhodophytes. Genetic tools for research on red algae (rhodophytes) are lacking. Here, Li and Bock present an efficient genetic transformation system for a model rhodophyte, and show that the transgenic DNA can be maintained as an extrachromosomal multi-copy plasmid in the algal nucleus.
Collapse
|
9
|
Zienkiewicz M, Krupnik T, Drożak A, Wasilewska W, Golke A, Romanowska E. Deletion of psbQ' gene in Cyanidioschyzon merolae reveals the function of extrinsic PsbQ' in PSII. PLANT MOLECULAR BIOLOGY 2018; 96:135-149. [PMID: 29196904 PMCID: PMC5778172 DOI: 10.1007/s11103-017-0685-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/22/2017] [Indexed: 05/24/2023]
Abstract
We have successfully produced single-cell colonies of C. merolae mutants, lacking the PsbQ' subunit in its PSII complex by application of DTA-aided mutant selection. We have investigated the physiological changes in PSII function and structure and proposed a tentative explanation of the function of PsbQ' subunit in the PSII complex. We have improved the selectivity of the Cyanidioschyzon merolae nuclear transformation method by the introduction of diphtheria toxin genes into the transformation vector as an auxiliary selectable marker. The revised method allowed us to obtained single-cell colonies of C. merolae, lacking the gene of the PsbQ' extrinsic protein. The efficiency of gene replacement was extraordinarily high, allowing for a complete deletion of the gene of interest, without undesirable illegitimate integration events. We have confirmed the absence of PsbQ' protein at genetic and protein level. We have characterized the physiology of mutant cells and isolated PSII protein complex and concluded that PsbQ' is involved in nuclear regulation of PSII activity, by influencing several parameters of PSII function. Among these: oxygen evolving activity, partial dissociation of PsbV, regulation of dimerization, downsizing of phycobilisomes rods and regulation of zeaxanthin abundance. The adaptation of cellular physiology appeared to favorite upregulation of PSII and concurrent downregulation of PSI, resulting in an imbalance of energy distribution, decrease of photosynthesis and inhibition of cell proliferation.
Collapse
Affiliation(s)
| | - Tomasz Krupnik
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Drożak
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Wioleta Wasilewska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Golke
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Elżbieta Romanowska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
10
|
Fujiwara T, Ohnuma M, Kuroiwa T, Ohbayashi R, Hirooka S, Miyagishima SY. Development of a Double Nuclear Gene-Targeting Method by Two-Step Transformation Based on a Newly Established Chloramphenicol-Selection System in the Red Alga Cyanidioschyzon merolae. FRONTIERS IN PLANT SCIENCE 2017; 8:343. [PMID: 28352279 PMCID: PMC5348525 DOI: 10.3389/fpls.2017.00343] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/27/2017] [Indexed: 05/24/2023]
Abstract
The unicellular red alga Cyanidioschyzon merolae possesses a simple cellular architecture that consists of one mitochondrion, one chloroplast, one peroxisome, one Golgi apparatus, and several lysosomes. The nuclear genome content is also simple, with very little genetic redundancy (16.5 Mbp, 4,775 genes). In addition, molecular genetic tools such as gene targeting and inducible gene expression systems have been recently developed. These cytological features and genetic tractability have facilitated various omics analyses. However, only a single transformation selection marker URA has been made available and thus the application of genetic modification has been limited. Here, we report the development of a nuclear targeting method by using chloramphenicol and the chloramphenicol acetyltransferase (CAT) gene. In addition, we found that at least 200-bp homologous arms are required and 500-bp arms are sufficient for a targeted single-copy insertion of the CAT selection marker into the nuclear genome. By means of a combination of the URA and CAT transformation systems, we succeeded in producing a C. merolae strain that expresses HA-cyclin 1 and FLAG-CDKA from the chromosomal CYC1 and CDKA loci, respectively. These methods of multiple nuclear targeting will facilitate genetic manipulation of C. merolae.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Cell Genetics, National Institute of GeneticsShizuoka, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
- Department of Genetics, Graduate University for Advanced StudiesShizuoka, Japan
| | - Mio Ohnuma
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
- National Institute of Technology, Hiroshima CollegeHiroshima, Japan
| | - Tsuneyoshi Kuroiwa
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
- Department of Chemical and Biological Science, Faculty of Science, Japan Women’s UniversityTokyo, Japan
| | - Ryudo Ohbayashi
- Department of Cell Genetics, National Institute of GeneticsShizuoka, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
| | - Shunsuke Hirooka
- Department of Cell Genetics, National Institute of GeneticsShizuoka, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
| | - Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of GeneticsShizuoka, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
- Department of Genetics, Graduate University for Advanced StudiesShizuoka, Japan
| |
Collapse
|
11
|
Zienkiewicz M, Krupnik T, Drożak A, Golke A, Romanowska E. Transformation of the Cyanidioschyzon merolae chloroplast genome: prospects for understanding chloroplast function in extreme environments. PLANT MOLECULAR BIOLOGY 2017; 93:171-183. [PMID: 27796719 PMCID: PMC5243890 DOI: 10.1007/s11103-016-0554-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/22/2016] [Indexed: 05/06/2023]
Abstract
We have successfully transformed an exthemophilic red alga with the chloramphenicol acetyltransferase gene, rendering this organism insensitive to its toxicity. Our work paves the way to further work with this new modelorganism. Here we report the first successful attempt to achieve a stable, under selectable pressure, chloroplast transformation in Cyanidioschizon merolae-an extremophilic red alga of increasing importance as a new model organism. The following protocol takes advantage of a double homologous recombination phenomenon in the chloroplast, allowing to introduce an exogenous, selectable gene. For that purpose, we decided to use chloramphenicol acetyltransferase (CAT), as chloroplasts are particularly vulnerable to chloramphenicol lethal effects (Zienkiewicz et al. in Protoplasma, 2015, doi: 10.1007/s00709-015-0936-9 ). We adjusted two methods of DNA delivery: the PEG-mediated delivery and the biolistic bombardment based delivery, either of these methods work sufficiently with noticeable preference to the former. Application of a codon-optimized sequence of the cat gene and a single colony selection yielded C. merolae strains, capable of resisting up to 400 µg/mL of chloramphenicol. Our method opens new possibilities in production of site-directed mutants, recombinant proteins and exogenous protein overexpression in C. merolae-a new model organism.
Collapse
Affiliation(s)
- Maksymilian Zienkiewicz
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Tomasz Krupnik
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Drożak
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Golke
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Elżbieta Romanowska
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|