1
|
Zeng YH, Yin ZN, Luo H, Gao F. DeOri 10.0: An Updated Database of Experimentally Identified Eukaryotic Replication Origins. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae076. [PMID: 39404857 DOI: 10.1093/gpbjnl/qzae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 12/19/2024]
Abstract
DNA replication is a complex and crucial biological process in eukaryotes. To facilitate the study of eukaryotic replication events, we present a database of eukaryotic DNA replication origins (DeOri), which collects genome-wide data on eukaryotic DNA replication origins currently available. With the rapid development of high-throughput experimental technology in recent years, the number of datasets in the new release of DeOri 10.0 increased from 10 to 151 and the number of sequences increased from 16,145 to 9,742,396. Besides nucleotide sequences and browser extensible data (BED) files, corresponding annotation files, such as coding sequences (CDSs), mRNAs, and other biological elements within replication origins, are also provided. The experimental techniques used for each dataset, as well as related statistical data, are also presented on web page. Differences in experimental methods, cell lines, and sequencing technologies have resulted in distinct replication origins, making it challenging to differentiate between cell-specific and non-specific replication origins. Based on multiple replication origin datasets at the species level, we scored and screened replication origins in Homo sapiens, Gallus gallus, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans. The screened regions with high scores were considered as species-conservative origins, which are integrated and presented as reference replication origins (rORIs). Additionally, we analyzed the distribution of relevant genomic elements associated with replication origins at the genome level, such as CpG island (CGI), transcription start site (TSS), and G-quadruplex (G4). These analysis results can be browsed and downloaded as needed at http://tubic.tju.edu.cn/deori/.
Collapse
Affiliation(s)
- Yu-Hao Zeng
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Zhen-Ning Yin
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
2
|
Rausch C, Weber P, Prorok P, Hörl D, Maiser A, Lehmkuhl A, Chagin VO, Casas-Delucchi CS, Leonhardt H, Cardoso MC. Developmental differences in genome replication program and origin activation. Nucleic Acids Res 2021; 48:12751-12777. [PMID: 33264404 PMCID: PMC7736824 DOI: 10.1093/nar/gkaa1124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.
Collapse
Affiliation(s)
- Cathia Rausch
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Patrick Weber
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - David Hörl
- Department of Biology II, LMU Munich, 81377 Munich, Germany
| | - Andreas Maiser
- Department of Biology II, LMU Munich, 81377 Munich, Germany
| | - Anne Lehmkuhl
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Vadim O Chagin
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.,Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
3
|
Miura H, Takahashi S, Poonperm R, Tanigawa A, Takebayashi SI, Hiratani I. Single-cell DNA replication profiling identifies spatiotemporal developmental dynamics of chromosome organization. Nat Genet 2019; 51:1356-1368. [PMID: 31406346 DOI: 10.1038/s41588-019-0474-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/26/2019] [Indexed: 01/09/2023]
Abstract
In mammalian cells, chromosomes are partitioned into megabase-sized topologically associating domains (TADs). TADs can be in either A (active) or B (inactive) subnuclear compartments, which exhibit early and late replication timing (RT), respectively. Here, we show that A/B compartments change coordinately with RT changes genome wide during mouse embryonic stem cell (mESC) differentiation. While A to B compartment changes and early to late RT changes were temporally inseparable, B to A changes clearly preceded late to early RT changes and transcriptional activation. Compartments changed primarily by boundary shifting, altering the compartmentalization of TADs facing the A/B compartment interface, which was conserved during reprogramming and confirmed in individual cells by single-cell Repli-seq. Differentiating mESCs altered single-cell Repli-seq profiles gradually but uniformly, transiently resembling RT profiles of epiblast-derived stem cells (EpiSCs), suggesting that A/B compartments might also change gradually but uniformly toward a primed pluripotent state. These results provide insights into how megabase-scale chromosome organization changes in individual cells during differentiation.
Collapse
Affiliation(s)
- Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Rawin Poonperm
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akie Tanigawa
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shin-Ichiro Takebayashi
- Laboratory of Molecular & Cellular Biology, Graduate Schoold of Bioresources, Mie University, Tsu, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan. .,Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
4
|
Delpech F, Collien Y, Mahou P, Beaurepaire E, Myllykallio H, Lestini R. Snapshots of archaeal DNA replication and repair in living cells using super-resolution imaging. Nucleic Acids Res 2018; 46:10757-10770. [PMID: 30212908 PMCID: PMC6237752 DOI: 10.1093/nar/gky829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
Using the haloarchaeon Haloferax volcanii as a model, we developed nascent DNA labeling and the functional GFP-labeled single-stranded binding protein RPA2 as novel tools to gain new insight into DNA replication and repair in live haloarchaeal cells. Our quantitative fluorescence microscopy data revealed that RPA2 forms distinct replication structures that dynamically responded to replication stress and DNA damaging agents. The number of the RPA2 foci per cell followed a probabilistic Poisson distribution, implying hitherto unnoticed stochastic cell-to-cell variation in haloarchaeal DNA replication and repair processes. The size range of haloarchaeal replication structures is very similar to those observed earlier in eukaryotic cells. The improved lateral resolution of 3D-SIM fluorescence microscopy allowed proposing that inhibition of DNA synthesis results in localized replication foci clustering and facilitated observation of RPA2 complexes brought about by chemical agents creating DNA double-strand breaks. Altogether our in vivo observations are compatible with earlier in vitro studies on archaeal single-stranded DNA binding proteins. Our work thus underlines the great potential of live cell imaging for unraveling the dynamic nature of transient molecular interactions that underpin fundamental molecular processes in the Third domain of life.
Collapse
Affiliation(s)
- Floriane Delpech
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| | - Yoann Collien
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| | - Pierre Mahou
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| | - Emmanuel Beaurepaire
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| | - Hannu Myllykallio
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| | - Roxane Lestini
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| |
Collapse
|
5
|
Stick R, Dráber P. Editorial. PROTOPLASMA 2017; 254:1141-1142. [PMID: 28299513 DOI: 10.1007/s00709-017-1093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Affiliation(s)
- Reimer Stick
- Institut für Zellbiologie, University of Bremen, Fachbereich 2, 28359, Bremen, Germany.
| | - Pavel Dráber
- Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic
| |
Collapse
|