1
|
Walkowiak-Nowicka K, Chowański S, Pacholska-Bogalska J, Adamski Z, Kuczer M, Rosiński G. Effects of alloferon and its analogues on reproduction and development of the Tenebrio molitor beetle. Sci Rep 2024; 14:17016. [PMID: 39043811 PMCID: PMC11266558 DOI: 10.1038/s41598-024-68118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
As the most numerous group of animals on Earth, insects are found in almost every ecosystem. Their useful role in the environment is priceless; however, for humans, their presence may be considered negative or even harmful. For years, people have been trying to control the number of pests by using synthetic insecticides, which eventually causes an increased level of resistance to applied compounds. The effects of synthetic insecticides have encouraged researchers to search for alternatives and thus develop safe compounds with high specificity. Using knowledge about the physiology of insects and the functionality of compounds of insect origin, a new class of bioinsecticides called peptidomimetics, which are appropriately modified insect analogues, was created. One promising compound that might be successfully modified is the thirteen amino acid peptide alloferon (HGVSGHGQHGVHG), which is obtained from the hemolymph of the blue blowfly Calliphora vicinia. Our research aimed to understand the physiological properties of alloferon and the activity of its peptidomimetics, which will provide the possibility of using alloferon or its analogues in the pharmaceutical industry, as a drug or adjuvant, or in agriculture as a bioinsecticide. We used alloferon and its three peptidomimetics, which are conjugates of the native peptide with three unsaturated fatty acids with various chain lengths: caprylic, myristic, and palmitic. We tested their effects on the morphology and activity of the reproductive system and the embryogenesis of the Tenebrio molitor beetle. We found that the tested compounds influenced the growth and maturation of ovaries and the expression level of the vitellogenin gene. The tested compounds also influenced the process of egg laying, embryogenesis, and offspring hatching, showing that alloferon might be a good peptide for the synthesis of effective bioinsecticides or biopharmaceuticals.
Collapse
Affiliation(s)
- Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, Wrocław, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Chikami Y, Yahata K. The structural and functional modularity of ovarian follicle epithelium in the pill-millipede Hyleoglomeris japonica Verhoeff, 1936 (Diplopoda: Glomerida: Glomeridae). Tissue Cell 2024; 88:102372. [PMID: 38598872 DOI: 10.1016/j.tice.2024.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Ovarian somatic tissues typically surround developing oocytes and play a crucial role in oogenesis across various metazoans, often displaying structural properties specific to their functions. However, there is an absence of evident structural modularity in the follicle epithelium of Myriapoda. We report here two structurally and developmentally distinct domains within the follicle epithelium of the Japanese pill millipede, Hyleoglomeris japonica. The follicle epithelium of H. japonica exhibits a thick cell mass at the apex of the follicle. These cells harbor abundant rough endoplasmic reticulum, mitochondria, Golgi complexes, and numerous microvilli, indicative of synthetic/secretory activities. Moreover, their height increases as oogenesis progresses. In contrast, another region of the epithelium lacks these features. Our findings highlight the presence of structural and functional modularity in the follicle epithelium of H. japonica. We suggest classifying the follicle epithelium of Myriapoda into three types: homogenous epithelia with enhanced synthetic activities, homogenous epithelia with diminished such activities, and heterogeneous epithelia with varying synthetic activities. These findings prompt a reevaluation of the nature of ovarian somatic tissues in Myriapoda as well as in Arthropoda.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Kensuke Yahata
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
3
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA,Department of Molecular Biology, Princeton University, Princeton, NJ, USA,Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
4
|
Donoughe S. Insect egg morphology: evolution, development, and ecology. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100868. [PMID: 34973433 DOI: 10.1016/j.cois.2021.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The insect egg can be viewed through many lenses: it is the single-celled developmental stage, a resource investment in the next generation, an unusually large and complex cell type, and the protective vessel for embryonic development. In this review, I describe the morphological diversity of insect eggs and then identify recent advances in understanding the patterns of egg evolution, the cellular mechanisms underlying egg development, and notable aspects of egg ecology. I also suggest areas for particularly promising future research on insect egg morphology; these topics touch upon diverse areas such as tissue morphogenesis, life history evolution, organismal scaling, cellular secretion, and oviposition ecology.
Collapse
Affiliation(s)
- Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL, USA.
| |
Collapse
|
5
|
Jędrzejowska I, Christophoryová J, Garbiec A. Small body size of pseudoscorpions and a distinct architecture of the ovary: A step to miniaturization? J Anat 2021; 239:1182-1195. [PMID: 34131910 PMCID: PMC8546526 DOI: 10.1111/joa.13485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022] Open
Abstract
Chelicerata, the second largest subphylum of Arthropoda, includes invertebrates with a wide range of body size. Pseudoscorpions are among small or miniature chelicerates which exhibit several morphological, anatomical, and developmental features related to miniaturization, e.g., replacement of book lungs by tracheae, unpaired gonads, and matrotrophic development of the embryos outside the female body, in the brood sac. In this paper, we show the ovary structure of two pseudoscorpion species, Cheiridium museorum and Apocheiridium ferum (Cheiridiidae). Both cheiridiids are one of the smallest pseudoscorpions. The results of our observations conducted in light, transmission electron, and confocal microscopy demonstrate that the ovary of C. museorum and A. ferum, displays a significant structural difference that is unusual for chelicerates. The difference concerns the spatially restricted position of the germarium. We show that such ovary architecture results in a significantly reduced number of growing oocytes and in consequence a reduced number of deposited eggs. A centrally located germarium implies also a modified pattern of ovary development during oocyte growth due to long distance migration of the germline and the accompanying somatic cells. Herein, we postulate that such an ovary structure is related to the pseudoscorpion's small body size and it is a step towards miniaturization in the smaller pseudoscorpions species.
Collapse
Affiliation(s)
- Izabela Jędrzejowska
- Department of Animal Developmental BiologyFaculty of Biological SciencesUniversity of WrocławWrocławPoland
| | - Jana Christophoryová
- Department of ZoologyFaculty of Natural SciencesComenius UniversityBratislavaSlovakia
| | - Arnold Garbiec
- Department of Animal Developmental BiologyFaculty of Biological SciencesUniversity of WrocławWrocławPoland
| |
Collapse
|
6
|
Establishment of an immortalized cell line derived from the pupal ovary of Mythimna separata (Lepidoptera: Noctuidae) and identification of the cell source. Cell Tissue Res 2021; 386:661-677. [PMID: 34599689 DOI: 10.1007/s00441-021-03528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Determining the source of primary cells is conductive to enriching sufficient cells with immortal potential thereby improving the success rate of establishing cell lines. However, most of the existing insect cell lines are established by mixing and fragmentation of explants. At present, the origin of cell lines can only be determined according to the cultured tissues, so it is impossible to determine which cell types they come from. In this study, a new cell line designated IOZCAS-Myse-1 was generated from pupal ovaries of the migratory pest Mythimna separata by explant tissues to derive adherent cultures. This paper mainly shows the further descriptive information on the origin of primary cells in the process of ovarian tissue isolation and culture. Phospho-histone H3 antibody-labeled cells with mitotic activity showed that the rapidly developing somatic cells in vivo gradually stopped proliferation when cultured ex vivo. The primary cells dissociated outside the tissue originated from the lumen cells, rather than the germ cells or the follicular epithelium cells. The results suggest that the newly established cell line IOZCAS-Myse-1 had two possible sources. One is the mutation of lumen cells in the vitellarium, and the other is the stem cells with differentiation potential in the germarium of the ovarioles. Moreover, the newly established cell line is sensitive to the infection of Autographa californica multiple nucleopolyhedrovirus, responds to 20-hydroxyecdysone and has weak encapsulation ability. Therefore, the new cell line can be a useful platform for replication of viral insecticides, screening of hormone-based insecticides and immunology research.
Collapse
|
7
|
Gerdes JA, Mannix KM, Hudson AM, Cooley L. HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis. Genetics 2020; 216:717-734. [PMID: 32883702 PMCID: PMC7648574 DOI: 10.1534/genetics.120.303629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
Ring canals in the female germline of Drosophila melanogaster are supported by a robust filamentous actin (F-actin) cytoskeleton, setting them apart from ring canals in other species and tissues. Previous work has identified components required for the expansion of the ring canal actin cytoskeleton, but has not identified the proteins responsible for F-actin recruitment or accumulation. Using a combination of CRISPR-Cas9 mediated mutagenesis and UAS-Gal4 overexpression, we show that HtsRC-a component specific to female germline ring canals-is both necessary and sufficient to drive F-actin accumulation. Absence of HtsRC in the germline resulted in ring canals lacking inner rim F-actin, while overexpression of HtsRC led to larger ring canals. HtsRC functions in combination with Filamin to recruit F-actin to ectopic actin structures in somatic follicle cells. Finally, we present findings that indicate that HtsRC expression and robust female germline ring canal expansion are important for high fecundity in fruit flies but dispensable for their fertility-a result that is consistent with our understanding of HtsRC as a newly evolved gene specific to female germline ring canals.
Collapse
Affiliation(s)
- Julianne A Gerdes
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Katelynn M Mannix
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06520 Connecticut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511 Connecticut
| |
Collapse
|
8
|
Bilinski SM, Sekula M, Tworzydlo W. Morphogenesis of the ovarian follicular epithelium during initial stages of embryogenesis of the viviparous earwig,
Hemimerus talpoides. J Morphol 2019; 281:47-54. [DOI: 10.1002/jmor.21078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Szczepan M. Bilinski
- Department of Developmental Biology and Invertebrate MorphologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow Krakow Poland
| | - Malgorzata Sekula
- Department of Developmental Biology and Invertebrate MorphologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow Krakow Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate MorphologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow Krakow Poland
| |
Collapse
|