1
|
Richardson KH, Seif-Eddine M, Sills A, Roessler MM. Controlling and exploiting intrinsic unpaired electrons in metalloproteins. Methods Enzymol 2022; 666:233-296. [PMID: 35465921 DOI: 10.1016/bs.mie.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electron paramagnetic resonance spectroscopy encompasses a versatile set of techniques that allow detailed insight into intrinsically occurring paramagnetic centers in metalloproteins and enzymes that undergo oxidation-reduction reactions. In this chapter, we discuss the process from isolating the protein to acquiring and analyzing pulse EPR spectra, adopting a practical perspective. We start with considerations when preparing the protein sample, explain techniques and procedures available for determining the reduction potential of the redox-active center of interest and provide details on methodologies to trap a given paramagnetic state for detailed pulse EPR studies, with an emphasis on biochemical and spectroscopic tools available when multiple EPR-active species are present. We elaborate on some of the most commonly used pulse EPR techniques and the choices the user has to make, considering advantages and disadvantages and how to avoid pitfalls. Examples are provided throughout.
Collapse
Affiliation(s)
| | - Maryam Seif-Eddine
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Adam Sills
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Maxie M Roessler
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom.
| |
Collapse
|
2
|
Shah A, Roux A, Starck M, Mosely JA, Stevens M, Norman DG, Hunter RI, El Mkami H, Smith GM, Parker D, Lovett JE. A Gadolinium Spin Label with Both a Narrow Central Transition and Short Tether for Use in Double Electron Electron Resonance Distance Measurements. Inorg Chem 2019; 58:3015-3025. [DOI: 10.1021/acs.inorgchem.8b02892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anokhi Shah
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
- BSRC, University of St Andrews, St Andrews KY16 9ST, U.K
| | - Amandine Roux
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Jackie A. Mosely
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Michael Stevens
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - David G. Norman
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Robert I. Hunter
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - Hassane El Mkami
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - Graham M. Smith
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Janet E. Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
- BSRC, University of St Andrews, St Andrews KY16 9ST, U.K
| |
Collapse
|
3
|
Valera S, Ackermann K, Pliotas C, Huang H, Naismith JH, Bode BE. Accurate Extraction of Nanometer Distances in Multimers by Pulse EPR. Chemistry 2016; 22:4700-3. [PMID: 26865468 PMCID: PMC4848767 DOI: 10.1002/chem.201505143] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/15/2022]
Abstract
Pulse electron paramagnetic resonance (EPR) is gaining increasing importance in structural biology. The PELDOR (pulsed electron–electron double resonance) method allows extracting distance information on the nanometer scale. Here, we demonstrate the efficient extraction of distances from multimeric systems such as membrane‐embedded ion channels where data analysis is commonly hindered by multi‐spin effects.
Collapse
Affiliation(s)
- Silvia Valera
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Katrin Ackermann
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Christos Pliotas
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Hexian Huang
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - James H Naismith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Bela E Bode
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK. .,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|
4
|
Feintuch A, Otting G, Goldfarb D. Gd3+ Spin Labeling for Measuring Distances in Biomacromolecules. Methods Enzymol 2015; 563:415-57. [DOI: 10.1016/bs.mie.2015.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|