1
|
Kanďár R, Kopčil M, Laštovičková L. Determination of selected α-keto acids in dried blood samples using HPLC with fluorescence detection. J Pharm Biomed Anal 2022; 214:114738. [DOI: 10.1016/j.jpba.2022.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
|
2
|
Yang J, Wu S, Mai R, Lin L, Zhao W, Bai W. Formation of amino acid-derived volatile compounds in dry-cured mackerel (Scomberomorus niphonius): Metabolic pathways involving microorganisms, precursors, and intermediates. Food Chem 2021; 364:130163. [PMID: 34175624 DOI: 10.1016/j.foodchem.2021.130163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/30/2023]
Abstract
This study focuses on the formation mechanism of amino acid-derived volatile compounds (AAVC) in dry-cured mackerel (Scomberomorus niphonius) (DCM) during the process. Three kind of AAVC (3-methylbutanal, 3-methylbutanol, and phenylacetaldehyde) were detected in DCM. The content of 3-methylbutanal (14.6 mg/kg) was higher than that of phenylacetaldehyde (12.9 mg/kg), and part of which was reduced to 3-methylbutanol (5.15 mg/kg). While the corresponding intermediate, α-ketoisocaproate (156 μg/kg), was lower than that of phenylpyruvic acid (271 μg/kg), indicating its decarboxylation was limited. Five strains (Bacillus, Enterobacter, Staphylococcus, Macrococcus, and Lactobacillus) that can produce the relative transaminases and decarboxylases were involved in the production of AAVC. The most dominant strain, Bacillus (81.9%), was only involved in the production of 3-methylbutanal. The relative abundance of Staphylococcus, the sole phenylpyruvate decarboxylase-producing bacteria, was low, resulting in low product conversion. These results indicated that the production of AAVC is determined by specific microorganisms in the products.
Collapse
Affiliation(s)
- Juan Yang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Siliang Wu
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ruijie Mai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Li Lin
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Weidong Bai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
3
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Fedorova EN, Varlamova DO, Kivero AD, Guk KD, Ptitsyn LR. Ultra-performance liquid chromatography (UPLC) for the determination of organic acids – The intermediates of branched-chain amino acid biosynthesis in Escherichia coli strains. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1832894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Takemoto H, Wang CL, Nomoto T, Matsui M, Tomoda K, Nishiyama N. Pyruvate Responsiveness Based on α-Oxohydrazone Formation for Intracellular siRNA Release from Polyion Complex-Based Carriers. Biomacromolecules 2019; 20:2305-2314. [DOI: 10.1021/acs.biomac.9b00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| | - Chih-Ling Wang
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keishiro Tomoda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259, Nagatsuta, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
6
|
Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of l-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst. Appl Microbiol Biotechnol 2015; 100:2183-91. [DOI: 10.1007/s00253-015-7048-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/19/2015] [Accepted: 09/25/2015] [Indexed: 01/30/2023]
|
7
|
Analysis of biologically-active, endogenous carboxylic acids based on chromatography-mass spectrometry. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Zimmermann M, Sauer U, Zamboni N. Quantification and mass isotopomer profiling of α-keto acids in central carbon metabolism. Anal Chem 2014; 86:3232-7. [PMID: 24533614 DOI: 10.1021/ac500472c] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mass spectrometry has been established as a powerful and versatile technique for studying cellular metabolism. Applications range from profiling of metabolites to accurate quantification and tracing of stable isotopes through the biochemical reaction network. Despite broad coverage of central carbon metabolism, most methods fail to provide accurate assessments of the α-keto acids oxaloacetic acid, pyruvate, and glyoxylate because these compounds are highly reactive and degraded during sample processing and mass spectrometric measurement. We present a derivatization procedure to chemically stabilize these compounds readily during quenching of cellular metabolism. Stable derivatives were analyzed by ultrahigh pressure liquid chromatography coupled tandem mass spectrometry to accurately quantify the abundance of α-keto acids in biological matrices. Eventually, we demonstrated that the developed protocol is suited to measure mass isotopomers of these α-keto acids in tracer studies with stable isotopes. In conclusion, the here described method fills one of the last technical gaps for metabolomics investigations of central carbon metabolism.
Collapse
Affiliation(s)
- Michael Zimmermann
- Institute of Molecular Systems Biology, ETH Zurich , Zurich 8093, Switzerland
| | | | | |
Collapse
|
9
|
Hidalgo FJ, Navarro JL, Delgado RM, Zamora R. Determination of α-keto acids in pork meat and Iberian ham via tandem mass spectrometry. Food Chem 2013; 140:183-8. [DOI: 10.1016/j.foodchem.2013.02.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 09/13/2012] [Accepted: 02/10/2013] [Indexed: 10/27/2022]
|
10
|
Magiera S, Baranowska I, Kusa J, Baranowski J. A liquid chromatography and tandem mass spectrometry method for the determination of potential biomarkers of cardiovascular disease. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 919-920:20-9. [PMID: 23411015 DOI: 10.1016/j.jchromb.2012.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 12/30/2022]
Abstract
A simple, accurate and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of α-ketoglutaric acid (α-KG), L-carnitine (L-CAR) and acetyl-L-carnitine (acetyl-L-CAR) in human urine as potential biomarkers of cardiovascular disease. The separation was performed using an isocratic elution of 0.1% formic acid in water and acetonitrile (97:3, v/v) on an Acclaim 120 C8 column (150 mm × 4.6 mm, 3.0 μm). The flow rate of the mobile phase was 1.2 mL/min and the total assay run time was 3 min. Detection was performed on a triple-quadrupole mass spectrometer in selected reaction monitoring (SRM) mode via an electrospray ionization (ESI) source in positive and negative ion modes. This method covered a linearity range of 0.1-500 ng/mL for L-CAR and acetyl-L-CAR and 1-1000 ng/mL for α-KG with lower limits of quantification (LLOQ) of 0.08 ng/mL for L-CAR, 0.04 ng/mL for acetyl-L-CAR and 0.8 ng/mL for α-KG. The intra-day and inter-day precision and accuracy of the quality control samples exhibited relative standard deviations of less than 5.54% and relative error values from -5.95% to 3.11%. Analyte stability was evaluated under various sample preparation, analysis and storage conditions and varied from -9.89% to -0.47%. A two-step solid-phase extraction (SPE) procedure using silica gel and quaternary amine cartridges was used for urine sample cleanup. The average recoveries for all analyzed compounds were better than 86.64% at three concentrations. The method was successfully applied for the quantitation of α-KG, L-CAR and acetyl-L-CAR in human urine samples.
Collapse
Affiliation(s)
- Sylwia Magiera
- Department of Analytical Chemistry, Silesian University of Technology, 7 M. Strzody Str., 44-100 Gliwice, Poland.
| | | | | | | |
Collapse
|
11
|
Thakkar R, Saravaia H, Ambasana M, Shah A. ULTRA PERFORMANCE LIQUID CHROMATOGRAPHIC METHOD FOR QUANTITATIVE ANALYSIS OF SOME KETO-ANALOGUES OF ESSENTIAL AMINO ACID CALCIUM SALT USED IN SEVERE RENAL FAILURE. J LIQ CHROMATOGR R T 2012. [DOI: 10.1080/10826076.2011.629385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rakshit Thakkar
- a Department of Chemistry , National Facility for Drug Discovery through NCE's Development & Instrumentation Support to SMPE's, Saurashtra University , Rajkot , Gujarat , India
| | - Hitesh Saravaia
- a Department of Chemistry , National Facility for Drug Discovery through NCE's Development & Instrumentation Support to SMPE's, Saurashtra University , Rajkot , Gujarat , India
| | - Mrunal Ambasana
- a Department of Chemistry , National Facility for Drug Discovery through NCE's Development & Instrumentation Support to SMPE's, Saurashtra University , Rajkot , Gujarat , India
| | - Anamik Shah
- a Department of Chemistry , National Facility for Drug Discovery through NCE's Development & Instrumentation Support to SMPE's, Saurashtra University , Rajkot , Gujarat , India
| |
Collapse
|
12
|
Mahar KP, Khuhawar MY, Kazi TG, Abbasi K, Shabir GA, Arain SA. A NOVEL HPLC METHOD FOR THE DETERMINATION OF ALPHA-KETO ACIDS IN HUMAN SERUM USING MESO STILLBENEDIAMINE AS DERIVATIZATION REAGENT. J LIQ CHROMATOGR R T 2012. [DOI: 10.1080/10826076.2011.619034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Khalida P. Mahar
- a Institute of Advanced Research Studies in Chemical Sciences, University of Sindh , Jamshoro , Pakistan
| | - Muhammad Y. Khuhawar
- a Institute of Advanced Research Studies in Chemical Sciences, University of Sindh , Jamshoro , Pakistan
| | - Tasneem G. Kazi
- a Institute of Advanced Research Studies in Chemical Sciences, University of Sindh , Jamshoro , Pakistan
| | - Kulsoom Abbasi
- a Institute of Advanced Research Studies in Chemical Sciences, University of Sindh , Jamshoro , Pakistan
| | - Ghulam A. Shabir
- b School of Life Sciences , Oxford Brookes University , Oxford , United Kingdom
| | - Shafique A. Arain
- c School of Chemistry , University of Manchester , Manchester , United Kingdom
| |
Collapse
|
13
|
Isolation of enantioselective α-hydroxyacid dehydrogenases based on a high-throughput screening method. Bioprocess Biosyst Eng 2012; 35:1515-22. [DOI: 10.1007/s00449-012-0741-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/22/2012] [Indexed: 10/28/2022]
|
14
|
Mühling J, Tiefenbach M, López-Barneo J, Piruat JI, García-Flores P, Pfeil U, Gries B, Mühlfeld C, Weigand MA, Kummer W, Weissmann N, Paddenberg R. Mitochondrial complex II participates in normoxic and hypoxic regulation of α-keto acids in the murine heart. J Mol Cell Cardiol 2010; 49:950-61. [PMID: 20920510 DOI: 10.1016/j.yjmcc.2010.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/09/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
α-Keto acids (α-KAs) are not just metabolic intermediates but are also powerful modulators of different cellular pathways. Here, we tested the hypothesis that α-KA concentrations are regulated by complex II (succinate dehydrogenase=SDH), which represents an intersection between the mitochondrial respiratory chain for which an important function in cardiopulmonary oxygen sensing has been demonstrated, and the Krebs cycle, a central element of α-KA metabolism. SDH subunit D heterozygous (SDHD(+/-)) and wild-type (WT) mice were housed at normoxia or hypoxia (10% O(2)) for 4 days or 3 weeks, and right ventricular pressure, right ventricle/(left ventricle+septum) ratio, cardiomyocyte ultrastructure, pulmonary vascular remodelling, ventricular complex II subunit expression, SDH activity and α-KA concentrations were analysed. In both strains, hypoxia induced increases in right ventricular pressure and enhanced muscularization of distal pulmonary arteries. Right ventricular hypertrophy was less severe in SDHD(+/-) mice although the cardiomyocyte ultrastructure and mitochondrial morphometric parameters were unchanged. Protein amounts of SDHA, SDHB and SDHC, and SDH activity were distinctly reduced in SDHD(+/-) mice. In normoxic SDHD(+/-) mice, α-ketoisocaproate concentration was lowered to 50% as compared to WT animals. Right/left ventricular concentration differences and the hypoxia-induced decline in individual α-KAs were less pronounced in SDHD(+/-) animals indicating that mitochondrial complex II participates in the adjustment of cardiac α-KA concentrations both under normoxic and hypoxic conditions. These characteristics are not related to the hemodynamic consequences of hypoxia-induced pulmonary vascular remodelling, since its extent and right ventricular pressure were not affected in SDHD(+/-) mice albeit right ventricular hypertrophy was attenuated.
Collapse
Affiliation(s)
- Jörg Mühling
- Department of Anesthesiology, Pain and Palliative Medicine, University Medical Center St Radboud, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|