1
|
Traboni S, Esposito F, Ziaco M, De Cesare N, Bedini E, Iadonisi A. Catalytic Cleavage of the 9-Fluorenylmethoxycarbonyl (Fmoc) Protecting Group under Neat Conditions. Org Lett 2024; 26:3284-3288. [PMID: 38547490 DOI: 10.1021/acs.orglett.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
This work reports the first solvent-free catalytic approach for the cleavage of the fluorenylmethoxycarbonyl (Fmoc) protecting group from amine and alcohol functionalities. Various saccharide, peptide, and glyco-amino acid substrates were efficiently deprotected by simple treatment with 20 mol % neat 4-dimethylaminopyridine (DMAP) (one of the effective base catalysts found), without any solvent or stoichiometric additives. Small model structures were finally assembled through one-pot, base-catalyzed, solvent-free multistep sequences combining the Fmoc cleavage with esterification, amidation, and/or glycosylation steps.
Collapse
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
| | - Fabiana Esposito
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
| | - Marcello Ziaco
- Institute of Bio-Molecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Noemi De Cesare
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
| |
Collapse
|
2
|
Kozakai N, Endo S, Nakayama A, Horinouchi R, Yoshida M, Arai M, Shinada T. First Total Syntheses of Beauvericin A and allo-Beauvericin A. ACS OMEGA 2024; 9:12228-12236. [PMID: 38496974 PMCID: PMC10938307 DOI: 10.1021/acsomega.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
The first total syntheses of beauvericin A and allo-beauvericin A were achieved. N-Methyl-l-phenylalanine, (2R)-hydroxylvaleric acid, and (2R,3S)- or (2R,3R)-2-hydroxy-2-methylpentanoic acid were linked and cyclized to form the target natural products. The structure of synthetic beauvericin A was confirmed by X-ray crystallographic analysis. NMR data of the synthetic beauvericins were identical with those of the reported natural products. These results secure the structures of natural products, as originally proposed in the isolation studies.
Collapse
Affiliation(s)
- Natsumi Kozakai
- Graduate
School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Seiya Endo
- Graduate
School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Atsushi Nakayama
- Graduate
School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Riku Horinouchi
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamadaoka, Suita , Osaka 565-0871, Japan
| | - Makoto Yoshida
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamadaoka, Suita , Osaka 565-0871, Japan
| | - Masayoshi Arai
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamadaoka, Suita , Osaka 565-0871, Japan
| | - Tetsuro Shinada
- Graduate
School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
3
|
Almaliti J, Alhindy M, Yoon MC, Hook V, Molinski TF, O’Donoghue AJ, Gerwick WH. Orthogonal Deprotection Strategy of Fmoc Provides Improved Synthesis of Sensitive Peptides: Application to Z-Arg-Lys-AOMK. ACS OMEGA 2024; 9:3997-4003. [PMID: 38284081 PMCID: PMC10809369 DOI: 10.1021/acsomega.3c08629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Protecting groups (PGs) in peptide synthesis have inspired advanced design principles that incorporate "orthogonality" for selective C- and N-terminus and side-chain deprotections. The conventionally acid-stable 9-fluorenylmethoxycarbonyl (Fmoc) group is one of the most widely used N-protection groups in solid- and solution-phase synthesis. Despite the versatility of Fmoc, deprotection by the removal of the Fmoc group to unmask primary amines requires the use of a basic secondary amine nucleophile, but this stratagem poses challenges in sensitive molecules that bear reactive electrophilic groups. An expansion of PG versatility, a tunable orthogonality, in the late-stage synthesis of peptides would add flexibility to the synthetic design and implementation. Here, we report a novel Fmoc deprotection method using hydrogenolysis under mildly acidic conditions for the synthesis of Z-Arg-Lys-acyloxymethyl ketone (Z-R-K-AOMK). This new method is not only valuable for Fmoc deprotection in the synthesis of complex peptides that contain highly reactive electrophiles, or other similar sensitive functional groups, that are incompatible with traditional Fmoc deprotection conditions but also tolerant of N-Boc groups present in the substrate.
Collapse
Affiliation(s)
- Jehad Almaliti
- Department
Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman 11942, Jordan
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Momen Alhindy
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Michael C. Yoon
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- School
of Medicine, Department of Neurosciences, and Department of Pharmacology, University of California San Diego, La Jolla, California 29093, United States
| | - Tadeusz F. Molinski
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Department
of Chemistry, University of California San
Diego, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Talbott JM, Tessier BR, Harding EE, Walby GD, Hess KJ, Baskevics V, Katkevics M, Rozners E, MacKay JA. Improved Triplex-Forming Isoorotamide PNA Nucleobases for A-U Recognition of RNA Duplexes. Chemistry 2023; 29:e202302390. [PMID: 37647091 DOI: 10.1002/chem.202302390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Four new isoorotamide (Io)-containing PNA nucleobases have been designed for A-U recognition of double helical RNA. New PNA monomers were prepared efficiently and incorporated into PNA nonamers for binding A-U in a PNA:RNA2 triplex. Isothermal titration calorimetry and UV thermal melting experiments revealed slightly improved binding affinity for singly modified PNA compared to known A-binding nucleobases. Molecular dynamics simulations provided further insights into binding of Io bases in the triple helix. Together, the data revealed interesting insights into binding modes including the notion that three Hoogsteen hydrogen bonds are unnecessary for strong selective binding of an extended nucleobase. Cationic monomer Io8 additionally gave the highest affinity observed for an A-binding nucleobase to date. These results will help inform future nucleobase design toward the goal of recognizing any sequence of double helical RNA.
Collapse
Affiliation(s)
- John M Talbott
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| | - Brandon R Tessier
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Emily E Harding
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| | - Grant D Walby
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| | - Kyle J Hess
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| | | | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - James A MacKay
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| |
Collapse
|
5
|
Aptamers with Self-Loading Drug Payload and pH-Controlled Drug Release for Targeted Chemotherapy. Pharmaceutics 2021; 13:pharmaceutics13081221. [PMID: 34452182 PMCID: PMC8398837 DOI: 10.3390/pharmaceutics13081221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
Doxorubicin (DOX) is a common anti-tumor drug that binds to DNA or RNA via non-covalent intercalation between G-C sequences. As a therapeutic agent, DOX has been used to form aptamer–drug conjugates for targeted cancer therapy in vitro and in vivo. To improve the therapeutic potential of aptamer–DOX conjugates, we synthesized trifurcated Newkome-type monomer (TNM) structures with three DOX molecules bound through pH-sensitive hydrazone bonds to formulate TNM-DOX. The aptamer–TNM–DOX conjugate (Apt–TNM-DOX) was produced through a simple self-loading process. Chemical validation revealed that Apt–TNM-DOX stably carried high drug payloads of 15 DOX molecules per aptamer sequence. Functional characterization showed that DOX payload release from Apt–TNM-DOX was pH-dependent and occurred at pH 5.0, which reflects the microenvironment of tumor cell lysosomes. Further, Apt–TNM-DOX specifically targeted lymphoma cells without affecting off-target control cells. Aptamer-mediated cell binding resulted in the uptake of Apt–TNM-DOX into targeted cells and the release of DOX payload within cell lysosomes to inhibit growth of targeted lymphoma cells. The Apt–TNM-DOX provides a simple, non-toxic approach to develop aptamer-based targeted therapeutics and may reduce the non-specific side effects associated with traditional chemotherapy.
Collapse
|
6
|
Portada T, Margetić D, Štrukil V. Mechanochemical Catalytic Transfer Hydrogenation of Aromatic Nitro Derivatives. Molecules 2018; 23:molecules23123163. [PMID: 30513686 PMCID: PMC6321105 DOI: 10.3390/molecules23123163] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanochemical ball milling catalytic transfer hydrogenation (CTH) of aromatic nitro compounds using readily available and cheap ammonium formate as the hydrogen source is demonstrated as a simple, facile and clean approach for the synthesis of substituted anilines and selected pharmaceutically relevant compounds. The scope of mechanochemical CTH is broad, as the reduction conditions tolerate various functionalities, for example nitro, amino, hydroxy, carbonyl, amide, urea, amino acid and heterocyclic. The presented methodology was also successfully integrated with other types of chemical reactions previously carried out mechanochemically, such as amide bond formation by coupling amines with acyl chlorides or anhydrides and click-type coupling reactions between amines and iso(thio)cyanates. In this way, we showed that active pharmaceutical ingredients Procainamide and Paracetamol could be synthesized from the respective nitro-precursors on milligram and gram scale in excellent isolated yields.
Collapse
Affiliation(s)
- Tomislav Portada
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Davor Margetić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vjekoslav Štrukil
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
7
|
Zheng H, Saha M, Appella DH. Synthesis of Fmoc-Protected ( S, S)- trans-Cyclopentane Diamine Monomers Enables the Preparation and Study of Conformationally Restricted Peptide Nucleic Acids. Org Lett 2018; 20:7637-7640. [PMID: 30460846 DOI: 10.1021/acs.orglett.8b03374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient synthesis of Fmoc-protected ( S, S)- trans-cyclopentane PNA ( tcypPNA) monomers starting from mono-Boc-protected ( S, S)-1,2-cyclopentanediamine is reported. A general synthetic strategy was developed so that tcypPNA monomers with each nucleobase can be made in sufficient quantity and purity for use in solid-phase peptide synthesis (SPPS). The newly synthesized monomers were then successfully incorporated into 10-residue PNA oligomers using standard Fmoc chemistry for SPPS. The different tcypPNAs allow different positions in the sequence to be conformationally constrained with ( S, S)- trans-cyclopentane to determine the effects on binding to complementary DNA.
Collapse
Affiliation(s)
- Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) , National Institutes of Health , 8 Center Drive, Room 404 , Bethesda , Maryland 20892 , United States
| | - Mrinmoy Saha
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) , National Institutes of Health , 8 Center Drive, Room 404 , Bethesda , Maryland 20892 , United States
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) , National Institutes of Health , 8 Center Drive, Room 404 , Bethesda , Maryland 20892 , United States
| |
Collapse
|
8
|
Liu X, Astruc D. Development of the Applications of Palladium on Charcoal in Organic Synthesis. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800343] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials; China Three Gorges University, Yichang; Hubei 443002 People's Republic of China
| | - Didier Astruc
- ISM, UMR CNRS 5255; Université de Bordeaux; 351 Cours de la Libération 33405 Talence Cedex France
| |
Collapse
|
9
|
Scale-Up Synthesis and Identification of GLYX-13, a NMDAR Glycine-Site Partial Agonist for the Treatment of Major Depressive Disorder. Molecules 2018; 23:molecules23050996. [PMID: 29695090 PMCID: PMC6102568 DOI: 10.3390/molecules23050996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/11/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
GLYX-13, a NMDAR glycine-site partial agonist, was discovered as a promising antidepressant with rapidly acting effects but no ketamine-like side effects. However, the reported synthetic process route had deficiencies of low yield and the use of unfriendly reagents. Here, we report a scaled-up synthesis of GLYX-13 with an overall yield of 30% on the hectogram scale with a column chromatography-free strategy, where the coupling and deprotection reaction conditions were systematically optimized. Meanwhile, the absolute configuration of precursor compound of GLYX-13 was identified by X-ray single crystal diffraction. Finally, the activity of GLYX-13 was verified in the cortical neurons of mice through whole-cell voltage-clamp technique.
Collapse
|
10
|
Sbicca L, González AL, Gresika A, Di Giorgio A, Closa JT, Tejedor RE, Andréola ML, Azoulay S, Patino N. Exploring the impact of the side-chain length on peptide/RNA binding events. Phys Chem Chem Phys 2017; 19:18452-18460. [PMID: 28681892 DOI: 10.1039/c7cp03726k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (KD) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.
Collapse
Affiliation(s)
- Lola Sbicca
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jad YE, Govender T, Kruger HG, El-Faham A, de la Torre BG, Albericio F. Green Solid-Phase Peptide Synthesis (GSPPS) 3. Green Solvents for Fmoc Removal in Peptide Chemistry. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.6b00439] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | - Ayman El-Faham
- Department
of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | | | - Fernando Albericio
- Department
of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering,
Biomaterials and Nanomedicine, Barcelona
Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Stoye A, Nagalingam G, Britton WJ, Payne RJ. Synthesis of Norfijimycin A with Activity against Mycobacterium tuberculosis. Aust J Chem 2017. [DOI: 10.1071/ch16559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The total synthesis of norfijimycin A, a simplified analogue of the marine natural product fijimycin A, is described. Fijimycin A is a cyclic depsipeptide that has been shown to possess activity against methicillin-resistant Staphylococcus aureus. The natural product contains a rare N,β-dimethyl leucine unit with unknown stereochemistry at the β-carbon. To evaluate the importance of the β-methyl group for antimicrobial activity, we introduced N-methyl leucine into the natural product scaffold. The resulting norfijimycin A was shown to possess significant activity against Mycobacterium tuberculosis, the etiological agent of tuberculosis.
Collapse
|
13
|
Konnert L, Lamaty F, Martinez J, Colacino E. Solventless mechanosynthesis of N-protected amino esters. J Org Chem 2014; 79:4008-17. [PMID: 24738762 DOI: 10.1021/jo500463y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mechanochemical derivatizations of N- or C-protected amino acids were performed in a ball mill under solvent-free conditions. A vibrational ball mill was used for the preparation of N-protected α- and β-amino esters starting from the corresponding N-unmasked precursors via a carbamoylation reaction in the presence of di-tert-butyl dicarbonate (Boc2O), benzyl chloroformate (Z-Cl) or 9-fluorenylmethoxycarbonyl chloroformate (Fmoc-Cl). A planetary ball mill proved to be more suitable for the synthesis of amino esters from N-protected amino acids via a one-pot activation/esterification reaction in the presence of various dialkyl dicarbonates or chloroformates. The spot-to-spot reactions were straightforward, leading to the final products in reduced reaction times with improved yields and simplified work-up procedures.
Collapse
Affiliation(s)
- Laure Konnert
- Institut des Biomolécules Max Mousseron , UMR 5247 CNRS-UM I-UM II, Place E. Bataillon, cc 1703, 34095 Montpellier, France
| | | | | | | |
Collapse
|
14
|
A mild removal of Fmoc group using sodium azide. Amino Acids 2013; 46:367-74. [PMID: 24306456 DOI: 10.1007/s00726-013-1625-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/13/2013] [Indexed: 01/19/2023]
Abstract
A mild method for effectively removing the fluorenylmethoxycarbonyl (Fmoc) group using sodium azide was developed. Without base, sodium azide completely deprotected N (α)-Fmoc-amino acids in hours. The solvent-dependent conditions were carefully studied and then optimized by screening different sodium azide amounts and reaction temperatures. A variety of Fmoc-protected amino acids containing residues masked with different protecting groups were efficiently and selectively deprotected by the optimized reaction. Finally, a biologically significant hexapeptide, angiotensin IV, was successfully synthesized by solid phase peptide synthesis using the developed sodium azide method for all Fmoc removals. The base-free condition provides a complement method for Fmoc deprotection in peptide chemistry and modern organic synthesis.
Collapse
|