1
|
Shiwal A, Nibrad D, Tadas M, Katariya R, Kale M, Wankhede N, Kotagale N, Umekar M, Taksande B. Polyamines signalling pathway: A key player in unveiling the molecular mechanisms underlying Huntington's disease. Neuroscience 2025; 570:213-224. [PMID: 39986431 DOI: 10.1016/j.neuroscience.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Polyaminesare essential organic cations found in all eukaryotic cells and play an important role in many cellular processes including growth, differentiation, andneuroprotection. This review explores the complex relationship between polyamine signaling and Huntington's disease (HD), an autosomal-dominant neurodegenerative disorder characterized by the progressive degeneration of medium-spiny neurons in the striatum and cortex due to mutations in the huntingtin gene. We provide a comprehensive overview of how polyamines, specificallyputrescine,spermidine, andspermine, regulate important cellular functions such as gene expression, protein synthesis, membrane stability, and ion channel regulation with implications for HD. Dysfunction in polyamine metabolism in HD, reveals how changes in these molecules promote oxidative stress, mitochondrial dysfunction, andexcitotoxicity. Importantly, polyamines interact with mutanthuntingtin protein (mHTT) to affect its aggregationand neurotoxicity. This effect may contribute to the pathophysiological mechanisms underlying HD, suggesting that polyamines may act as potential biomarkers of disease progression. Additionally, we discuss the therapeutic implications of targeting the polyamine signaling pathway to alleviate HD symptoms. By enhancing autophagy and modulating neurotransmitter systems, polyamines mayprovideneuroprotectionagainstmHTT-inducedtoxicity. Moreover, the present review provides new insight into the role of polyamines in the pathogenesis of HDand suggests that regulation of polyamine metabolism may represent a promising therapy to slow the disease progression. Besides this, the review highlights the need for further investigation of the diverse roles of polyamines in neurodegenerative diseases, including HD, paving the way for novel interventions to improve cellular homeostasis andpatient outcomes.
Collapse
Affiliation(s)
- Amit Shiwal
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Dhanshree Nibrad
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nitu Wankhede
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, MS 444 604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India.
| |
Collapse
|
2
|
Gil-Martínez A, Galiana-Roselló C, Lázaro-Gómez A, Mulet-Rivero L, González-García J. Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines. Chembiochem 2024:e202400873. [PMID: 39656761 DOI: 10.1002/cbic.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
- Príncipe Felipe Research Center, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Andrea Lázaro-Gómez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Laura Mulet-Rivero
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
3
|
Tamura R, Chen J, De Jaeger M, Morris JF, Scott DA, Vangheluwe P, Looger LL. Genetically encoded fluorescent sensors for visualizing polyamine levels, uptake, and distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609037. [PMID: 39229183 PMCID: PMC11370472 DOI: 10.1101/2024.08.21.609037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Polyamines are abundant and physiologically essential biomolecules that play a role in numerous processes, but are disrupted in diseases such as cancer, and cardiovascular and neurological disorders. Despite their importance, measuring free polyamine concentrations and monitoring their metabolism and uptake in cells in real-time remains impossible due to the lack of appropriate biosensors. Here we engineered, characterized, and validated the first genetically encoded biosensors for polyamines, named iPASnFRs. We demonstrate the utility of iPASnFR for detecting polyamine import into mammalian cells, to the cytoplasm, mitochondria, and the nucleus. We demonstrate that these sensors are useful to probe the activity of polyamine transporters and to uncover biochemical pathways underlying the distribution of polyamines amongst organelles. The sensors powered a high-throughput small molecule compound library screen, revealing multiple compounds in different chemical classes that strongly modulate cellular polyamine levels. These sensors will be powerful tools to investigate the complex interplay between polyamine uptake and metabolic pathways, address open questions about their role in health and disease, and enable screening for therapeutic polyamine modulators.
Collapse
|
4
|
Prabodh A, Grimm LM, Biswas PK, Mahram V, Biedermann F. Pillar[n]arene-Based Fluorescence Turn-On Chemosensors for the Detection of Spermine, Spermidine, and Cadaverine in Saline Media and Biofluids. Chemistry 2024; 30:e202401071. [PMID: 39140791 DOI: 10.1002/chem.202401071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 08/15/2024]
Abstract
Polyamines are essential analytes due to their critical role in various biological processes and human health in general. Due to their role as regulators for cell growth and proliferation (putrescine and spermine), as neuroprotectors, gero-, and cardiovascular protectors (spermidine), and as bacterial growth indicators (cadaverine), rapid, simple, and cost-effective methods for polyamine detection in biofluids are in demand. The present study focuses on the development and investigation of self-assembled and fluorescent host⋅dye chemo-sensors based on sulfonated pillar[5]arene for the specific detection of polyamines. Binding studies, as well as stability and functionality assessments of the turn-on chemosensors for selective polyamine detection in saline and biologically relevant media, are shown. Furthermore, the practical applicability of the developed chemo-sensors is demonstrated in biofluids such as human urine and saliva.
Collapse
Affiliation(s)
- Amrutha Prabodh
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Laura M Grimm
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Pronay Kumar Biswas
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Vahideh Mahram
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
5
|
Schibalski RS, Shulha AS, Tsao BP, Palygin O, Ilatovskaya DV. The role of polyamine metabolism in cellular function and physiology. Am J Physiol Cell Physiol 2024; 327:C341-C356. [PMID: 38881422 PMCID: PMC11427016 DOI: 10.1152/ajpcell.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Polyamines are molecules with multiple amino groups that are essential for cellular function. The major polyamines are putrescine, spermidine, spermine, and cadaverine. Polyamines are important for posttranscriptional regulation, autophagy, programmed cell death, proliferation, redox homeostasis, and ion channel function. Their levels are tightly controlled. High levels of polyamines are associated with proliferative pathologies such as cancer, whereas low polyamine levels are observed in aging, and elevated polyamine turnover enhances oxidative stress. Polyamine metabolism is implicated in several pathophysiological processes in the nervous, immune, and cardiovascular systems. Currently, manipulating polyamine levels is under investigation as a potential preventive treatment for several pathologies, including aging, ischemia/reperfusion injury, pulmonary hypertension, and cancer. Although polyamines have been implicated in many intracellular mechanisms, our understanding of these processes remains incomplete and is a topic of ongoing investigation. Here, we discuss the regulation and cellular functions of polyamines, their role in physiology and pathology, and emphasize the current gaps in knowledge and potential future research directions.
Collapse
Affiliation(s)
- Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Anastasia S Shulha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Betty P Tsao
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
6
|
Rádis-Baptista G, Konno K. Spider and Wasp Acylpolyamines: Venom Components and Versatile Pharmacological Leads, Probes, and Insecticidal Agents. Toxins (Basel) 2024; 16:234. [PMID: 38922129 PMCID: PMC11209471 DOI: 10.3390/toxins16060234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PAs) are polycationic biogenic amines ubiquitously present in all life forms and are involved in molecular signaling and interaction, determining cell fate (e.g., cell proliferation, dif-ferentiation, and apoptosis). The intricate balance in the PAs' levels in the tissues will determine whether beneficial or detrimental effects will affect homeostasis. It's crucial to note that endoge-nous polyamines, like spermine and spermidine, play a pivotal role in our understanding of neu-rological disorders as they interact with membrane receptors and ion channels, modulating neuro-transmission. In spiders and wasps, monoamines (histamine, dopamine, serotonin, tryptamine) and polyamines (spermine, spermidine, acyl polyamines) comprise, with peptides and other sub-stances, the low molecular weight fraction of the venom. Acylpolyamines are venom components exclusively from spiders and a species of solitary wasp, which cause inhibition chiefly of iono-tropic glutamate receptors (AMPA, NMDA, and KA iGluRs) and nicotinic acetylcholine receptors (nAChRs). The first venom acylpolyamines ever discovered (argiopines, Joro and Nephila toxins, and philanthotoxins) have provided templates for the design and synthesis of numerous analogs. Thus far, analogs with high potency exert their effect at nanomolar concentrations, with high se-lectivity toward their ionotropic and ligand receptors. These potent and selective acylpolyamine analogs can serve biomedical purposes and pest control management. The structural modification of acylpolyamine with photolabile and fluorescent groups converted these venom toxins into use-ful molecular probes to discriminate iGluRs and nAchRs in cell populations. In various cases, the linear polyamines, like spermine and spermidine, constituting venom acyl polyamine backbones, have served as cargoes to deliver active molecules via a polyamine uptake system on diseased cells for targeted therapy. In this review, we examined examples of biogenic amines that play an essential role in neural homeostasis and cell signaling, contributing to human health and disease outcomes, which can be present in the venom of arachnids and hymenopterans. With an empha-sis on the spider and wasp venom acylpolyamines, we focused on the origin, structure, derivatiza-tion, and biomedical and biotechnological application of these pharmacologically attractive, chemically modular venom components.
Collapse
Affiliation(s)
- Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza 60165-081, Brazil
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
7
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
8
|
Li D, Neo SP, Gunaratne J, Sabapathy K. EPLIN-β is a novel substrate of ornithine decarboxylase antizyme 1 and mediates cellular migration. J Cell Sci 2023; 136:jcs260427. [PMID: 37325974 PMCID: PMC10281260 DOI: 10.1242/jcs.260427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
Polyamines promote cellular proliferation. Their levels are controlled by ornithine decarboxylase antizyme 1 (Az1, encoded by OAZ1), through the proteasome-mediated, ubiquitin-independent degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis. Az1-mediated degradation of other substrates such as cyclin D1 (CCND1), DNp73 (TP73) or Mps1 regulates cell growth and centrosome amplification, and the currently known six Az1 substrates are all linked with tumorigenesis. To understand whether Az1-mediated protein degradation might play a role in regulating other cellular processes associated with tumorigenesis, we employed quantitative proteomics to identify novel Az1 substrates. Here, we describe the identification of LIM domain and actin-binding protein 1 (LIMA1), also known as epithelial protein lost in neoplasm (EPLIN), as a new Az1 target. Interestingly, between the two EPLIN isoforms (α and β), only EPLIN-β is a substrate of Az1. The interaction between EPLIN-β and Az1 appears to be indirect, and EPLIN-β is degraded by Az1 in a ubiquitination-independent manner. Az1 absence leads to elevated EPLIN-β levels, causing enhanced cellular migration. Consistently, higher LIMA1 levels correlate with poorer overall survival of colorectal cancer patients. Overall, this study identifies EPLIN-β as a novel Az1 substrate regulating cellular migration.
Collapse
Affiliation(s)
- Dan Li
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Suat Peng Neo
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
9
|
Kim S, Chang JH. Structural Analysis of Spermidine Synthase from Kluyveromyces lactis. Molecules 2023; 28:molecules28083446. [PMID: 37110680 PMCID: PMC10146546 DOI: 10.3390/molecules28083446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Spermidine is a polyamine molecule that performs various cellular functions, such as DNA and RNA stabilization, autophagy modulation, and eIF5A formation, and is generated from putrescine by aminopropyltransferase spermidine synthase (SpdS). During synthesis, the aminopropyl moiety is donated from decarboxylated S-adenosylmethionine to form putrescine, with 5'-deoxy-5'-methylthioadenosine being produced as a byproduct. Although the molecular mechanism of SpdS function has been well-established, its structure-based evolutionary relationships remain to be fully understood. Moreover, only a few structural studies have been conducted on SpdS from fungal species. Here, we determined the crystal structure of an apo-form of SpdS from Kluyveromyces lactis (KlSpdS) at 1.9 Å resolution. Structural comparison with its homologs revealed a conformational change in the α6 helix linked to the gate-keeping loop, with approximately 40° outward rotation. This change caused the catalytic residue Asp170 to move outward, possibly due to the absence of a ligand in the active site. These findings improve our understanding of the structural diversity of SpdS and provide a missing link that expands our knowledge of the structural features of SpdS in fungal species.
Collapse
Affiliation(s)
- Seongjin Kim
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Science Education Research Institute, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Kang DE, An YB, Kim Y, Ahn S, Kim YJ, Lim JS, Ryu SH, Choi H, Yoo J, You WK, Lee DY, Park J, Hong M, Lee GM, Baik JY, Hong JK. Enhanced cell growth, production, and mAb quality produced in Chinese hamster ovary-K1 cells by supplementing polyamine in the media. Appl Microbiol Biotechnol 2023; 107:2855-2870. [PMID: 36947192 DOI: 10.1007/s00253-023-12459-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Polyamines such as putrescine (PUT), spermidine (SPD), and spermine (SPM) are amine group-containing biomolecules that regulate multiple intracellular functions such as proliferation, differentiation, and stress response in mammalian cells. Although these biomolecules can be generated intracellularly, lack of polyamine-synthesizing activity has occasionally been reported in a few mammalian cell lines such as Chinese hamster ovary (CHO)-K1; thus, polyamine supplementation in serum-free media is required to support cell growth and production. In the present study, the effects of biogenic polyamines PUT, SPD, and SPM in media on cell growth, production, metabolism, and antibody quality were explored in cultures of antibody-producing CHO-K1 cells. Polyamine withdrawal from media significantly suppressed cell growth and production. On the other hand, enhanced culture performance was achieved in polyamine-containing media conditions in a dose-dependent manner regardless of polyamine type. In addition, in polyamine-deprived medium, distinguishing metabolic features, such as enriched glycolysis and suppressed amino acid consumption, were observed and accompanied by higher heterogeneity of antibody quality compared with the optimal concentration of polyamines. Furthermore, an excessive concentration of polyamines negatively affected culture performance as well as antibody quality. Hence, the results suggest that polyamine-related metabolism needs to be further investigated and polyamines in cell growth media should be optimized as a controllable parameter in CHO cell culture bioprocessing. KEY POINTS: • Polyamine supplementation enhanced cell growth and production in a dose-dependent manner • Polyamine type and concentration in the media affected mAb quality • Optimizing polyamines in the media is suggested in CHO cell bioprocessing.
Collapse
Affiliation(s)
- Da Eun Kang
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Yeong Bin An
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Yeunju Kim
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Seawon Ahn
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Young Jin Kim
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Jung Soo Lim
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Soo Hyun Ryu
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Hyoju Choi
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Jiseon Yoo
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Weon-Kyoo You
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, South Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, South Korea
| | - Jong Youn Baik
- Department of Biological Engineering, Inha University, Incheon, 22212, South Korea.
| | - Jong Kwang Hong
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea.
| |
Collapse
|
11
|
Laginha RC, Martins CB, Brandão ALC, Marques J, Marques MPM, Batista de Carvalho LAE, Santos IP, Batista de Carvalho ALM. Evaluation of the Cytotoxic Effect of Pd 2Spm against Prostate Cancer through Vibrational Microspectroscopies. Int J Mol Sci 2023; 24:ijms24031888. [PMID: 36768221 PMCID: PMC9916163 DOI: 10.3390/ijms24031888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Regarding the development of new antineoplastic agents, with a view to assess the selective antitumoral potential which aims at causing irreversible damage to cancer cells while preserving the integrity of their healthy counterparts, it is essential to evaluate the cytotoxic effects in both healthy and malignant human cell lines. In this study, a complex with two Pd(II) centers linked by the biogenic polyamine spermine (Pd2Spm) was tested on healthy (PNT-2) and cancer (LNCaP and PC-3) prostate human cell lines, using cisplatin as a reference. To understand the mechanisms of action of both cisplatin and Pd2Spm at a molecular level, Fourier Transform Infrared (FTIR) and Raman microspectroscopies were used. Principal component analysis was applied to the vibrational data, revealing the major metabolic changes caused by each drug, which were found to rely on DNA, lipids, and proteins, acting as biomarkers of drug impact. The main changes were observed between the B-DNA native conformation and either Z-DNA or A-DNA, with a higher effect on lipids having been detected in the presence of cisplatin as compared to Pd2Spm. In turn, the Pd-agent showed a more significant impact on proteins.
Collapse
Affiliation(s)
- Raquel C. Laginha
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Clara B. Martins
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ana L. C. Brandão
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Joana Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M. Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A. E. Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239854462
| | - Inês P. Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | | |
Collapse
|
12
|
Mohajeri M, Ayatollahi SA, Goli M, Mokhtari S, Khandan M, Nasiri A, Kobarfard F. Comparison of the Polyamine Content of Five Spring Flowers with Wheat Germ as a Rich Anti-aging Polyamine Source for Preparation of Nutraceutical Products. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e134938. [PMID: 38116557 PMCID: PMC10728854 DOI: 10.5812/ijpr-134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/18/2023] [Accepted: 04/01/2023] [Indexed: 12/21/2023]
Abstract
Polyamines prolong longevity due to their role in cell proliferation and are regarded as an essential group of anti-aging substances that reduce the risk of cardiovascular, neurological, and chronic inflammatory illnesses, as well as cancer. Because of its importance in growth and tissue regeneration, discovering polyamine-rich sources has gotten a lot of interest. Given the role of polyamines in controlling plant growth and physiological changes in the spring after cold winter stress, high polyamine concentrations in quickly growing plant tissues such as flowers, blossoms, and germs are possible. Based on this premise, five different spring flowers were selected and isolated from relevant plants, dried, and then quantified for the first time using an accurate, simple, and repeatable quantification method, liquid chromatography-tandem mass spectrometry. According to the amount of spermidine found in the samples investigated in this study, dried flower powders of Wisteria sinensis (244.18 µg/g), Lonicera caprifolium (217.28 µg/g), and Jasminum officinale (200.33 µg/g) appear to be a good source of spermidine. With additional research, W. sinensis dried flower powder is a good source of polyamines, whereas L. caprifolium and J. officinale dried flower powders are recommended as a rich source of spermidine for the preparation of natural supplements for people over the age of 30 to improve cell proliferation and anti-aging.
Collapse
Affiliation(s)
- Maryam Mohajeri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Shaya Mokhtari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Central Research Laboratories, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khandan
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Nasiri
- Vice-Chancellor for Food and Drug Affairs, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Granit A, Mishra K, Barasch D, Peretz-Yablonsky T, Eyal S, Kakhlon O. Metabolomic profiling of triple negative breast cancer cells suggests that valproic acid can enhance the anticancer effect of cisplatin. Front Cell Dev Biol 2022; 10:1014798. [PMID: 36544904 PMCID: PMC9760697 DOI: 10.3389/fcell.2022.1014798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 12/11/2022] Open
Abstract
Cisplatin is an effective chemotherapeutic agent for treating triple negative breast cancer (TNBC). Nevertheless, cisplatin-resistance might develop during the course of treatment, allegedly by metabolic reprograming, which might influence epigenetic regulation. We hypothesized that the histone deacetylase inhibitor (HDACi) valproic acid (VPA) can counter the cisplatin-induced metabolic changes leading to its resistance. We performed targeted metabolomic and real time PCR analyses on MDA-MB-231 TNBC cells treated with cisplatin, VPA or their combination. 22 (88%) out of the 25 metabolites most significantly modified by the treatments, were acylcarnitines (AC) and three (12%) were phosphatidylcholines (PCs). The most discernible effects were up-modulation of AC by cisplatin and, contrarily, their down-modulation by VPA, which was partial in the VPA-cisplatin combination. Furthermore, the VPA-cisplatin combination increased PCs, sphingomyelins (SM) and hexose levels, as compared to the other treatments. These changes predicted modulation of different metabolic pathways, notably fatty acid degradation, by VPA. Lastly, we also show that the VPA-cisplatin combination increased mRNA levels of the fatty acid oxidation (FAO) promoting enzymes acyl-CoA synthetase long chain family member 1 (ACSL1) and decreased mRNA levels of fatty acid synthase (FASN), which is the rate limiting enzyme of long-chain fatty acid synthesis. In conclusion, VPA supplementation altered lipid metabolism, especially fatty acid oxidation and lipid synthesis, in cisplatin-treated MDA-MB-231 TNBC cells. This metabolic reprogramming might reduce cisplatin resistance. This finding may lead to the discovery of new therapeutic targets, which might reduce side effects and counter drug tolerance in TNBC patients.
Collapse
Affiliation(s)
- Avital Granit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Institute for Drug Research School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kumudesh Mishra
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dinorah Barasch
- Mass Spectrometry Unit, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Peretz-Yablonsky
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Eyal
- Institute for Drug Research School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Dame Susan Garth Chair of Cancer Research, The David R. Bloom Centre for Pharmacy and Dr. Adolf and Klara Brettler Centre for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Rosario SR, Smith RJ, Patnaik SK, Liu S, Barbi J, Yendamuri S. Altered acetyl-CoA metabolism presents a new potential immunotherapy target in the obese lung microenvironment. Cancer Metab 2022; 10:17. [PMID: 36289552 PMCID: PMC9598035 DOI: 10.1186/s40170-022-00292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Contrary to the "obesity paradox," which arises from retrospective studies relying on body mass index to define obesity, epidemiologic evidence suggests central or visceral obesity is associated with a higher risk for the development of lung cancer. About 60% of individuals at high risk for developing lung cancer or those already with early-stage disease are either overweight or obese. Findings from resected patient tumors and mouse lung tumor models show obesity dampens immune activity in the tumor microenvironment (TME) encouraging disease progression. In line with this, we have observed a marked, obesity-specific enhancement in the presence and phenotype of immunosuppressive regulatory T (Treg) cells in murine tumors as well as the airways of both humans and mice. Leveraging direct metabolomic measurements and robust inferred analyses from RNA-sequencing data, we here demonstrate for the first time that visceral adiposity alters the lung microenvironment via dysregulated acetyl-CoA metabolism in a direction that facilitates immune suppression and lung carcinogenesis.
Collapse
Affiliation(s)
- Spencer R. Rosario
- grid.240614.50000 0001 2181 8635Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA ,grid.240614.50000 0001 2181 8635Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Randall J. Smith
- grid.240614.50000 0001 2181 8635Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Santosh K. Patnaik
- grid.240614.50000 0001 2181 8635Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Song Liu
- grid.240614.50000 0001 2181 8635Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Joseph Barbi
- grid.240614.50000 0001 2181 8635Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA ,grid.240614.50000 0001 2181 8635Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Sai Yendamuri
- grid.240614.50000 0001 2181 8635Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| |
Collapse
|
15
|
Choi UY, Lee JJ, Park A, Jung KL, Lee SA, Choi YJ, Lee HR, Lai CJ, Eoh H, Jung JU. Herpesvirus-induced spermidine synthesis and eIF5A hypusination for viral episomal maintenance. Cell Rep 2022; 40:111234. [PMID: 35977517 DOI: 10.1016/j.celrep.2022.111234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/16/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022] Open
Abstract
Spermidine is essential for cellular growth and acts as a prerequisite of hypusination, a post-translational modification of eukaryotic initiation factor 5A (eIF5A), allowing the translation of polyproline-containing proteins. Here, we show that oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) increases spermidine synthesis and eIF5A hypusination to enhance expression of polyproline-containing latency-associated nuclear antigen (LANA) for viral episomal maintenance. KSHV upregulates intracellular spermidine levels by dysregulating polyamine metabolic pathways in three-dimensional (3D) culture and 2D de novo infection conditions. Increased intracellular spermidine leads to increased eIF5A hypusination, ultimately enhancing LANA expression. In contrast, inhibition of spermidine synthesis or eIF5A hypusination alleviates LANA expression, decreasing viral episomal maintenance and KSHV-infected cell proliferation in vitro and in vivo, which is reversed by spermidine supplement. This demonstrates that KSHV hijacks spermidine synthesis and eIF5A hypusination pathways to enhance LANA expression for viral episomal maintenance, suggesting polyamine metabolism and eIF5A hypusination as therapeutic targets for KSHV-induced tumorigenesis.
Collapse
Affiliation(s)
- Un Yung Choi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Jae Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kyle L Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shin-Ae Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youn Jung Choi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Chih-Jen Lai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jae U Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
16
|
Regulatory effect of polyamines and indole on expression of stress adaptation genes in <i> Escherichia coli </i>. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. Indole and polyamines are involved in the regulation of physiological processes in bacteria associated with adaptation to stress, biofilm formation, antibiotic tolerance, and bacterial persistence. However, the molecular targets and mechanisms of action of these metabolites are still poorly understood. In this work, we studied the effect of polyamines and indole on the expression of such genes as: rpoS, relA, and spoT, encoding regulators of the general stress responses and starvation; hns and stpA, encoding global regulators of gene expression; rmf, yqjD, hpf, raiA, rsfS, sra, ettA, encoding ribosome hibernation factors.The aim. To study the regulatory effects of polyamines and indole on the expression of these genes, which are responsible for the adaptation of Escherichia coli to stress.Materials and methods. We used strains of E. coli in this study. The amount of polyamines was studied by thin layer chromatography. The indole concentration was determined by high performance liquid chromatography. Gene expression was studied using real-time RT-PCR.Results. The addition of polyamines putrescine, cadaverine and spermidine to the medium stimulated the expression of all the studied genes. The maximal stimulation was observed at the stationary phase mostly. Putrescine and spermidine had the most significant effect. At 24 h of cultivation, an equimolar conversion of exogenous tryptophan into indole was showed. At this time, the expression of two genes – rmf and raiA – increased.Conclusions. We have shown that polyamines upregulate the expression of all the studied genes at the transcriptional level. The stimulating effect is specific for the phase of the batch culture and the type of polyamine. Indole has a positive effect on the expression of the rmf and raiA genes.
Collapse
|
17
|
Molecular Pathways Involved in the Anti-Cancer Activity of Flavonols: A Focus on Myricetin and Kaempferol. Int J Mol Sci 2022; 23:ijms23084411. [PMID: 35457229 PMCID: PMC9026553 DOI: 10.3390/ijms23084411] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have always represented valuable allies in the battle against several illnesses, particularly cancer. In this field, flavonoids are known to modulate a wide panel of mechanisms involved in tumorigenesis, thus rendering them worthy candidates for both cancer prevention and treatment. In particular, it was reported that flavonoids regulate apoptosis, as well as hamper migration and proliferation, crucial events for the progression of cancer. In this review, we collect recent evidence concerning the anti-cancer properties of the flavonols myricetin and kaempferol, discussing their mechanisms of action to give a thorough overview of their noteworthy capabilities, which are comparable to those of their most famous analogue, namely quercetin. On the whole, these flavonols possess great potential, and hence further study is highly advised to allow a proper definition of their pharmaco-toxicological profile and assess their potential use in protocols of chemoprevention and adjuvant therapies.
Collapse
|
18
|
Expression of Spermine Oxidase Is Associated with Colorectal Carcinogenesis and Prognosis of Patients. Biomedicines 2022; 10:biomedicines10030626. [PMID: 35327428 PMCID: PMC8944969 DOI: 10.3390/biomedicines10030626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022] Open
Abstract
Uncovering tumor markers of colorectal cancer is important for the early detection and prognosis of the patients. Spermine oxidase (SMOX) is upregulated in various cancers. The present study aims to explore the biologic function and expression patterns of SMOX in colorectal cancer (CRC), the third most common type of cancer worldwide. We used quantitative real-time PCR, Western blot, and in vitro functional studies in four CRC cell lines knocked down by SMOX siRNA and immunohistochemistry in 350 cases of CRC tissues. The results showed that SMOX was overexpressed in CRC cell lines and clinical samples. SMOX overexpression in tumor tissues was an independent prognostic factor, worsening overall survival (p = 0.001). The knock-down of SMOX inhibited CRC cell proliferation, invasion, and soft agar colony formation, uncovering its carcinogenic functions. This study indicated that SMOX overexpression could be an important oncogene in CRC and might serve as a valuable prognostic marker and potential therapeutic target for CRC.
Collapse
|
19
|
Barba-Aliaga M, Alepuz P. Role of eIF5A in Mitochondrial Function. Int J Mol Sci 2022; 23:1284. [PMID: 35163207 PMCID: PMC8835957 DOI: 10.3390/ijms23031284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is an evolutionarily conserved protein that binds ribosomes to facilitate the translation of peptide motifs with consecutive prolines or combinations of prolines with glycine and charged amino acids. It has also been linked to other molecular functions and cellular processes, such as nuclear mRNA export and mRNA decay, proliferation, differentiation, autophagy, and apoptosis. The growing interest in eIF5A relates to its association with the pathogenesis of several diseases, including cancer, viral infection, and diabetes. It has also been proposed as an anti-aging factor: its levels decay in aged cells, whereas increasing levels of active eIF5A result in the rejuvenation of the immune and vascular systems and improved brain cognition. Recent data have linked the role of eIF5A in some pathologies with its function in maintaining healthy mitochondria. The eukaryotic translation initiation factor 5A is upregulated under respiratory metabolism and its deficiency reduces oxygen consumption, ATP production, and the levels of several mitochondrial metabolic enzymes, as well as altering mitochondria dynamics. However, although all the accumulated data strongly link eIF5A to mitochondrial function, the precise molecular role and mechanisms involved are still unknown. In this review, we discuss the findings linking eIF5A and mitochondria, speculate about its role in regulating mitochondrial homeostasis, and highlight its potential as a target in diseases related to energy metabolism.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| |
Collapse
|
20
|
Coker-Gurkan A, Koyuncu K, Yerlikaya PO, Arisan ED. miR27a, a fine-tuning molecule, interacts with growth hormone (GH) signaling and ornithine decarboxylase (ODC) via targeting STAT5. Amino Acids 2021; 54:71-84. [PMID: 34825975 DOI: 10.1007/s00726-021-03101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Autocrine growth hormone (GH) expression triggers cell proliferation, invasion-metastasis in vitro and in vivo models, but GH gene mutations inhibit postnatal growth. Natural polyamines (PA); putrescine, spermidine, spermine trigger cell growth and differentiation. The importance of miR27a has shown to exert a suppressive effect on ornithine decarboxylase (ODC) expression in dwarf mice models. We aimed to modulate the role of A13S, F166Δ, T24 GH gene mutations' impact on PA metabolism and epithelial-mesencyhmal transition (EMT) pathway through miR27a. Biologically active GH signaling triggered cell viability, growth, and colony formation, but T24A alteration significantly decreases aggressive profiles due to inactive GH signaling through a decline in STAT5 activity and expressions of STAT5, c-myc and ODC. Although statistically significant increase in intracellular PA levels in wt GH signaling HEK293 cells compared to HEK293 cells with a lack of GH signaling, a sharp decline in PA levels measured in each mutant GH expressing HEK293 cells. When we inhibited miR27a, proliferation and colony formation accelerated through a significant increase in putrescine levels and upregulation of ODC, STAT5 expression. In contrast, a substantial decline in GH-mediated colony enlargement observed via ODC, STAT5 downregulation, and PA depletion in both wt and mutant GH expressing HEK293 cell lines by miR27a mimic transfection. In conclusion, T24A mutant GH expression declines the GH signaling through STAT5 activity, and mutant GH signaling decreased cell proliferation, division, and colony formation via EMT inhibition. The autocrine GH-mediated proliferative profiles were under the control of miR27a that depletes intracellular putrescine levels via targeting ODC.
Collapse
Affiliation(s)
- Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Engineering and Natural Sciences Faculty, Biruni University, Topkapı Campus, 34010, Istanbul, Turkey.
| | - Kadriye Koyuncu
- Department of Molecular Biology and Genetics, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pinar Obakan Yerlikaya
- Department of Biomedical Engineering, Biruni University, Topkapı Campus, 34010, Istanbul, Turkey
| | - Elif Damla Arisan
- Biotechnology Institute, Gebze Technical University, Istanbul, Turkey
| |
Collapse
|
21
|
Wodtke R, Pietzsch J, Löser R. Solid-Phase Synthesis of Selectively Mono-Fluorobenz(o)ylated Polyamines as a Basis for the Development of 18F-Labeled Radiotracers. Molecules 2021; 26:molecules26227012. [PMID: 34834103 PMCID: PMC8625420 DOI: 10.3390/molecules26227012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Polyamines are highly attractive vectors for tumor targeting, particularly with regards to the development of radiolabeled probes for imaging by positron emission (PET) and single-photon emission computed tomography (SPECT). However, the synthesis of selectively functionalized derivatives remains challenging due to the presence of multiple amino groups of similar reactivity. In this work, we established a synthetic methodology for the selective mono-fluorobenz(o)ylation of various biogenic diamines and polyamines as lead compounds for the perspective development of substrate-based radiotracers for targeting polyamine-specific membrane transporters and enzymes such as transglutaminases. For this purpose, the polyamine scaffold was constructed by solid-phase synthesis of the corresponding oxopolyamines and subsequent reduction with BH3/THF. Primary and secondary amino groups were selectively protected using Dde and Boc as protecting groups, respectively, in orientation to previously reported procedures, which enabled the selective introduction of the reporter groups. For example, N1-FBz-spermidine, N4-FBz-spermidine, N8-FBz-spermidine, and N1-FBz-spermine and N4-FBz-spermine (FBz = 4-fluorobenzoyl) were obtained in good yields by this approach. The advantages and disadvantages of this synthetic approach are discussed in detail and its suitability for radiolabeling was demonstrated for the solid-phase synthesis of N1-[18F]FBz-cadaverine.
Collapse
Affiliation(s)
- Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany;
- Correspondence: (R.W.); (R.L.); Tel.: +49-351-260-3923 (R.W.); +49-351-260-3658 (R.L.)
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany;
- Faculty of Chemistry and Food Chemistry, School of Science, Technische University Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany;
- Faculty of Chemistry and Food Chemistry, School of Science, Technische University Dresden, Mommsenstraße 4, 01069 Dresden, Germany
- Correspondence: (R.W.); (R.L.); Tel.: +49-351-260-3923 (R.W.); +49-351-260-3658 (R.L.)
| |
Collapse
|
22
|
Tsigoias S, Papanikolaou MG, Kabanos TA, Kalampounias AG. Structure and dynamics of aqueous norspermidine solutions: an in situultrasonic relaxation spectroscopic study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:495104. [PMID: 34544061 DOI: 10.1088/1361-648x/ac2863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Anin situultrasonic relaxation spectroscopic study is presented in an effort to determine the structural changes and the dynamics involved when norspermidine (NSpd) is dissolved in water. Our aim is to elucidate the mechanism responsible for the observed relaxation mechanism in acoustic spectra and estimate the corresponding thermodynamic parameters and the associated volume change. The experimental spectra of aqueous NSpd solutions revealed a single Debye-type relaxation mechanism attributed to proton-transfer reaction. The concentration and temperature dependence of the acoustic parameters supports this assignment. The activation enthalpy and entropy were estimated equal to ΔH*= 1.79 ± 0.20 kcal mol-1and ΔS*= -18.31 ± 0.73 cal mol-1 K-1, respectively. The concentration and temperature dependence of the sound velocity and absorption in the solutions exhibit characteristic features that are related to alterations in the network rigidity due to variations in hydrogen-bonding interactions at molecular level. The volume change associated to proton-transfer reaction for NSpd has been estimated and compared with the volume change observed for an analogous guanidine, the 1,1,3,3 tetramethyl guanidine. The obtained results are discussed in the framework of an existing theoretical structural model highlighting the strong molecular association in these liquid mixtures leading to complementary information on the structure and dynamics of guanidine amines. A comprehensive model of the whole relaxation processes is presented and discussed in detail.
Collapse
Affiliation(s)
- S Tsigoias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - M G Papanikolaou
- Section of Inorganic and analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - T A Kabanos
- Section of Inorganic and analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - A G Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
- University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
23
|
Yan Y, Tang J, Yuan Q, Liu H, Huang J, Hsiang T, Bao C, Zheng L. Ornithine decarboxylase of the fungal pathogen Colletotrichum higginsianum plays an important role in regulating global metabolic pathways and virulence. Environ Microbiol 2021; 24:1093-1116. [PMID: 34472183 DOI: 10.1111/1462-2920.15755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Colletotrichum higginsianum is an important fungal pathogen causing anthracnose disease of cruciferous plants. In this study, we characterized a putative orthologue of yeast SPE1 in C. higginsianum, named ChODC. Deletion mutants of ChODC were defective in hyphal and conidial development. Importantly, deletion of ChODC significantly affected appressorium-mediated penetration in C. higginsianum. However, polyamines partially restore appressorium function and virulence indicating that loss of ChODC caused significantly decreased virulence by the crosstalk between polyamines and other metabolic pathways. Subsequently, transcriptomic and metabolomic analyses demonstrated that ChODC played an important role in metabolism of various carbon and nitrogen compounds including amino acids, carbohydrates and lipids. Along with these clues, we found deletion of ChODC affected glycogen and lipid metabolism, which were important for conidial storage utilization and functional appressorium formation. Loss of ChODC affected the mTOR signalling pathway via modulation of autophagy. Interestingly, cAMP treatment restored functional appressoria to the ΔChODC mutant, and rapamycin treatment also stimulated formation of functional appressoria in the ΔChODC mutant. Overall, ChODC was associated with the polyamine biosynthesis pathway, as a mediator of cAMP and mTOR signalling pathways to regulate appressorium function. Our study provides evidence of a link between ChODC and the cAMP signalling pathway and defines a novel mechanism by which ChODC regulates infection-associated autophagy and plant infection by fungi.
Collapse
Affiliation(s)
- Yaqin Yan
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China.,State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jintian Tang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinfeng Yuan
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Chonglai Bao
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
24
|
Ploskonos MV. Polyamines of biological fluids of the body and the diagnostic value of their determination in clinical and laboratory researches (review of literature). Klin Lab Diagn 2021; 66:197-204. [PMID: 33878239 DOI: 10.51620/0869-2084-2021-66-4-197-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The review provides the analysis of the content of the main polyamines (PA) - spermine, spermidine and putrescine in the most important biological fluids of the human body (blood, urine, seminal fluid, etc.). The assessment of their diagnostic and prognostic value in clinical practice is carried out. The novelty and value of assessing of the level of PA metabolites as new diagnostic markers of various diseases has been shown. Among such diseases as cancer, stroke, renal failure, for which the search for early markers is especially relevant. This survey data can be of practical interest and taken into account in estimating the level of PA and its derivatives in clinical and laboratory reseaches. The literature search for the review was carried out using the Scopus, Web of Science, MedLine, RSCI databases.
Collapse
Affiliation(s)
- M V Ploskonos
- Astrakhan State Medical University Health Ministry of Russian Federation
| |
Collapse
|
25
|
Zhang T, Hu L, Tang JF, Xu H, Tian K, Wu MN, Huang SY, Du YM, Zhou P, Lu RJ, He S, Xu JM, Si JJ, Li J, Chen DL, Ran JH. Metformin Inhibits the Urea Cycle and Reduces Putrescine Generation in Colorectal Cancer Cell Lines. Molecules 2021; 26:molecules26071990. [PMID: 33915902 PMCID: PMC8038129 DOI: 10.3390/molecules26071990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022] Open
Abstract
The urea cycle (UC) removes the excess nitrogen and ammonia generated by nitrogen-containing compound composites or protein breakdown in the human body. Research has shown that changes in UC enzymes are not only related to tumorigenesis and tumor development but also associated with poor survival in hepatocellular, breast, and colorectal cancers (CRC), etc. Cytoplasmic ornithine, the intermediate product of the urea cycle, is a specific substrate for ornithine decarboxylase (ODC, also known as ODC1) for the production of putrescine and is required for tumor growth. Polyamines (spermidine, spermine, and their precursor putrescine) play central roles in more than half of the steps of colorectal tumorigenesis. Given the close connection between polyamines and cancer, the regulation of polyamine metabolic pathways has attracted attention regarding the mechanisms of action of chemical drugs used to prevent CRC, as the drug most widely used for treating type 2 diabetes (T2D), metformin (Met) exhibits antitumor activity against a variety of cancer cells, with a vaguely defined mechanism. In addition, the influence of metformin on the UC and putrescine generation in colorectal cancer has remained unclear. In our study, we investigated the effect of metformin on the UC and putrescine generation of CRC in vivo and in vitro and elucidated the underlying mechanisms. In nude mice bearing HCT116 tumor xenografts, the administration of metformin inhibited tumor growth without affecting body weight. In addition, metformin treatment increased the expression of monophosphate (AMP)-activated protein kinase (AMPK) and p53 in both HCT116 xenografts and colorectal cancer cell lines and decreased the expression of the urea cycle enzymes, including carbamoyl phosphate synthase 1 (CPS1), arginase 1 (ARG1), ornithine trans-carbamylase (OTC), and ODC. The putrescine levels in both HCT116 xenografts and HCT116 cells decreased after metformin treatment. These results demonstrate that metformin inhibited CRC cell proliferation via activating AMPK/p53 and that there was an association between metformin, urea cycle inhibition and a reduction in putrescine generation.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Chongqing Three Gorges Medical College, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing 404120, China
| | - Ling Hu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Jia-Feng Tang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Chongqing Three Gorges Medical College, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing 404120, China
| | - Hang Xu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Kuan Tian
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
| | - Meng-Na Wu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Shi-Ying Huang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Yu-Mei Du
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Peng Zhou
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Rui-Jin Lu
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Shuang He
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Jia-Mei Xu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
| | - Jian-Jun Si
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
| | - Jing Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Di-Long Chen
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Chongqing Three Gorges Medical College, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing 404120, China
| | - Jian-Hua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Correspondence: ; Tel.: +86-150-8681-4824
| |
Collapse
|
26
|
Carneiro TJ, Araújo R, Vojtek M, Gonçalves-Monteiro S, Diniz C, Batista de Carvalho ALM, Marques MPM, Gil AM. Novel Insights into Mice Multi-Organ Metabolism upon Exposure to a Potential Anticancer Pd(II)-Agent. Metabolites 2021; 11:metabo11020114. [PMID: 33671194 PMCID: PMC7922283 DOI: 10.3390/metabo11020114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pd(II)-compounds are presently regarded as promising anticancer drugs, as an alternative to Pt(II)-based drugs (e.g., cisplatin), which typically trigger severe side-effects and acquired resistance. Dinuclear Pd(II) complexes with biogenic polyamines such as spermine (Pd2Spm) have exhibited particularly beneficial cytotoxic properties, hence unveiling the importance of understanding their impact on organism metabolism. The present study reports the first nuclear magnetic resonance (NMR)-based metabolomics study to assess the in vivo impact of Pd2Spm on the metabolism of healthy mice, to identify metabolic markers with possible relation to biotoxicity/side-effects and their dynamics. The changes in the metabolic profiles of both aqueous and lipophilic extracts of mice kidney, liver, and breast tissues were evaluated, as a function of drug-exposure time, using cisplatin as a reference drug. A putative interpretation was advanced for the metabolic deviations specifically triggered by Pd2Spm, this compound generally inducing faster metabolic response and recovery to control levels for all organs tested, compared to cisplatin (except for kidney lipid metabolism). These results constitute encouraging preliminary metabolic data suggestive of potential lower negative effects of Pd2Spm administration.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| | - Rita Araújo
- Department of Chemistry and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Ana L. M. Batista de Carvalho
- R&D Unit “Molecular-Physical Chemistry”, University of Coimbra, 3004-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - M. Paula M. Marques
- R&D Unit “Molecular-Physical Chemistry”, University of Coimbra, 3004-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- Department of Chemistry and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
- Correspondence: ; Tel.: +351-234370707
| |
Collapse
|
27
|
Li Q, Liu R, Zhu LL, Yu CY, Shuai YP, Sun LL, Bi KS. Quantitative evaluation of the compatibility effects of aidi injection on the treatment of hepatocellular carcinoma using targeted metabolomics: A new strategy on the mechanism study of an anticancer compound in traditional chinese medicine. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_86_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Coradduzza D, Azara E, Medici S, Arru C, Solinas T, Madonia M, Zinellu A, Carru C. A preliminary study procedure for detection of polyamines in plasma samples as a potential diagnostic tool in prostate cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1162:122468. [PMID: 33370684 DOI: 10.1016/j.jchromb.2020.122468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Many scientific contributions recognize polyamines as important biomarkers for the diagnosis and treatment of cancer. Several authors have suggested the use of LC/MS instruments as an elective method for their measurement, providing good detection limits and specificity; however, many of these procedures suffer from long chromatographic run times, high detection limits and lengthy and expensive sample pre-treatment steps. METHODS UHPLC coupled with high-resolution Orbitrap mass spectrometry (UHPLC/Orbitrap) was set up for the identification and separation ofpolyamines, together with some of their metabolites and catabolites, in the plasma of healthy and prostate cancer human patients. Thirteen metabolites were measured in deproteinized plasma samples through a new analytical approach known as the parallel reaction monitoring (PRM) for targeted quantitative analysis. RESULTS The calibration curves were linear and R2 ranged from 0.9913 to 0.9995 for all analytes. LOQ values are between 0.382 and 25 ng mL-1 and LOD values are between 0.109 and 7.421 ng mL-1. The method shows an accuracy and precision for intra-day and inter-day < 15% RSD and R.E.% for all the QC samples. The matrix effect calculated at different concentration levels did not exceed 15%. CONCLUSIONS The method developed provides rapid, easy and robust identification and measurement of a wide range of polyamines, and some of their metabolites that can be evaluated as biomarkers to predict the clinical features of prostate cancer patients, avoiding invasive diagnostic procedures.
Collapse
Affiliation(s)
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tatiana Solinas
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Massimo Madonia
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
29
|
Fenelon JC, Murphy BD. New functions for old factors: the role of polyamines during the establishment of pregnancy. Reprod Fertil Dev 2020; 31:1228-1239. [PMID: 30418870 DOI: 10.1071/rd18235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022] Open
Abstract
Implantation is essential for the establishment of a successful pregnancy, and the preimplantation period plays a significant role in ensuring implantation occurs in a timely and coordinated manner. This requires effective maternal-embryonic signalling, established during the preimplantation period, to synchronise development. Although multiple factors have been identified as present during this time, the exact molecular mechanisms involved are unknown. Polyamines are small cationic molecules that are ubiquitously expressed from prokaryotes to eukaryotes. Despite being first identified over 300 years ago, their essential roles in cell proliferation and growth, including cancer, have only been recently recognised, with new technologies and interest resulting in rapid expansion of the polyamine field. This review provides a summary of our current understanding of polyamine synthesis, regulation and function with a focus on recent developments demonstrating the requirements for polyamines during the establishment of pregnancy up to the implantation stage, in particular the role of polyamines in the control of embryonic diapause and the identification of an alternative pathway for their synthesis in sheep pregnancy. This, along with other novel discoveries, provides new insights into the control of the peri-implantation period in mammals and highlights the complexities that exist in regulating this critical period of pregnancy.
Collapse
Affiliation(s)
- Jane C Fenelon
- School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Bruce D Murphy
- Centre de recherché en reproduction et fertilité, Faculté de médicine vétérinaire, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| |
Collapse
|
30
|
Adomas B, Sikorski Ł, Bęś A, Warmiński K. Exposure of Lemna minor L. to gentian violet or Congo red is associated with changes in the biosynthesis pathway of biogenic amines. CHEMOSPHERE 2020; 254:126752. [PMID: 32335436 DOI: 10.1016/j.chemosphere.2020.126752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 05/21/2023]
Abstract
In the literature, there is a lack of data on the effect of gentian violet (GV) and congo red (CR) dyes on the biosynthesis pathway of biogenic amines (BAs) in Lemna minor L. (common duckweed). This plant species is an important link in the food chain. Both dyes inhibited growth, biomass yield and the biosynthesis of chlorophyll a in common duckweed. The predicted toxic units demonstrated that GV had a more toxic effect on the growth rate and biomass yield of common duckweed than CR. Decarboxylase activity in the biosynthesis of BAs in common duckweed is also a useful indicator for evaluating the toxicity of both dyes. Gentian violet also exerted more phytotoxic effects on the analyzed biochemical features of common duckweed because it changed the putrescine (Put) biosynthesis pathway, increased tyramine content 1.6 fold, inhibited the activity of S-adenosylmethionine decarboxylase by 40% and the activity of ornithine decarboxylase (ODC) by 80%. Tyrosine decarboxylase (TDC) was most active in plants exposed to the highest concentration of GV. Similarly to control plants, in common duckweed exposed to CR, Put was synthesized from ornithine; however, spermidine content was 86% higher, Put content was 51% lower, and ODC activity was 86% lower.
Collapse
Affiliation(s)
- Barbara Adomas
- University of Warmia and Mazury in Olsztyn, Department of Chemistry, Research Group of Environmental Toxicology, ul. Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Łukasz Sikorski
- University of Warmia and Mazury in Olsztyn, Department of Chemistry, Research Group of Environmental Toxicology, ul. Prawocheńskiego 17, 10-720, Olsztyn, Poland.
| | - Agnieszka Bęś
- University of Warmia and Mazury in Olsztyn, Department of Chemistry, Research Group of Environmental Toxicology, ul. Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Kazimierz Warmiński
- University of Warmia and Mazury in Olsztyn, Department of Chemistry, Research Group of Environmental Toxicology, ul. Prawocheńskiego 17, 10-720, Olsztyn, Poland
| |
Collapse
|
31
|
Komrakova M, Blaschke M, Ponce ML, Klüver A, Köpp R, Hüfner M, Schieker M, Miosge N, Siggelkow H. Decreased Expression of the Human Urea Transporter SLC14A1 in Bone is Induced by Cytokines and Stimulates Adipogenesis of Mesenchymal Progenitor Cells. Exp Clin Endocrinol Diabetes 2020; 128:582-595. [PMID: 31958845 DOI: 10.1055/a-1084-3888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The human urea transporter SLC14A1 (HUT11/UT-B) has been suggested as a marker for the adipogenic differentiation of bone cells with a relevance for bone diseases. We investigated the function of SLC14A1 in different cells models from bone environment. SLC14A1 expression and cytokine production was investigated in bone cells obtained from patients with osteoporosis. Gene and protein expression of SLC14A1 was studied during adipogenic or osteogenic differentiation of human mesenchymal progenitor cells (hMSCs) and of the single-cell-derived hMSC line (SCP-1), as well as in osteoclasts and chondrocytes. Localization was determined by histochemical methods and functionality by urea transport experiments. Expression of SLC14A1 mRNA was lower in cells from patients with osteoporosis that produced high levels of cytokines. Accordingly, when adding a combination of cytokines to SCP-1 SLC14A1 mRNA expression decreased. SLC14A1 mRNA expression decreased after both osteogenic and more pronounced adipogenic stimulation of hMSCs and SCP-1 cells. The highest SLC14A1 expression was determined in undifferentiated cells, lowest in chondrocytes and osteoclasts. Downregulation of SLC14A1 by siRNA resulted in an increased expression of interleukin-6 and interleukin-1 beta as well as adipogenic markers. Urea influx through SLC14A1 increased expression of osteogenic markers, adipogenic markers were suppressed. SLC14A1 protein was localized in the cell membrane and the cytoplasm. Summarizing, the SLC14A1 urea transporter affects early differentiation of hMSCs by diminishing osteogenesis or by favoring adipogenesis, depending on its expression level. Therefore, SLC14A1 is not unequivocally an adipogenic marker in bone. Our findings suggest an involvement of SLC14A1 in bone metabolism and inflammatory processes and disease-dependent influences on its expression.
Collapse
Affiliation(s)
- Marina Komrakova
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Martina Blaschke
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
- Endokrinologikum Göttingen, Göttingen, Germany
| | - Maria Laura Ponce
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Anne Klüver
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Regine Köpp
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Matthias Schieker
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximillians-University (LMU), Munich, Germany
| | - Nicolai Miosge
- Bone tissue regeneration work group, University Medical Center Göttingen, Göttingen, Germany
| | - Heide Siggelkow
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
- Endokrinologikum Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Pérez-Chávez NA, Nosthas Aguiar V, Allegretto JA, Albesa AG, Giussi JM, Longo GS. Triggering doxorubicin release from responsive hydrogel films by polyamine uptake. SOFT MATTER 2020; 16:7492-7502. [PMID: 32724986 DOI: 10.1039/d0sm00951b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyamines such as putrescine, spermidine and spermine are required in many inter- and intra-cellular processes. There is, however, evidence of anomalously high concentrations of these polyamines around cancer cells. Furthermore, high polyamine concentrations play a key role in accelerating the speed of cancer proliferation. Some current therapies target the reduction of the polyamine concentration to delay the cancer advance. In this study, we use a molecular theory to prove the concept that poly(methacrylic acid) (PMAA) hydrogels can play the dual role of incorporating and retaining polyamines as well as releasing preloaded drugs in response. Towards such a goal, we have developed a molecular model for each of the chemical species, which includes the shape, size, charge, protonation state, and configuration. Our results indicate that PMAA hydrogel films can incorporate significant amounts of polyamines; this absorption increases with the solution concentration of the polyamines. Doxorubicin was chosen as a model drug for this study, which can be successfully incorporated within the film; the optimal encapsulation conditions occur at low salt concentrations and pH values near neutral. Polyamine absorption within the film results in the desorption of the drug from the hydrogel. An increase in the concentration of the polyamines enhances the drug release. To validate our theoretical findings, poly(methacrylic acid) hydrogel thin films were synthesized by atom transfer radical polymerization. Absorption/desorption experiments followed by UV-Vis spectroscopy demonstrate doxorubicin encapsulation within these films and polyamine-dependent drug release.
Collapse
Affiliation(s)
- Néstor A Pérez-Chávez
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| | - Victor Nosthas Aguiar
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| | - Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina. and Universidad Nacional de San Martín (UNSAM), San Martín, Argentina
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| | - Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| |
Collapse
|
33
|
Červinka C, Štejfa V. Sublimation Properties of α,ω-Diamines Revisited from First-Principles Calculations. Chemphyschem 2020; 21:1184-1194. [PMID: 32243713 DOI: 10.1002/cphc.202000108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Indexed: 11/06/2022]
Abstract
Sublimation enthalpies of alkane-α,ω-diamines exhibit an odd-even pattern within their homologous series. First-principles calculations coupled with the quasi-harmonic approximation for crystals and with the conformation mixing model for the ideal gas are used to explain this phenomenon from the theoretical point of view. Crystals of the odd and even alkane-α,ω-diamines distinctly differ in their packing motifs. However, first-principles calculations indicate that it is a delicate interplay of the cohesive forces, phonons, molecular vibrations and conformational equilibrium which governs the odd-even pattern of the sublimation enthalpies within the homologous series. High molecular flexibility of the alkane-α,ω-diamines predetermines higher sensitivity of the computational model to the quality of the optimized geometries and relative conformational energies. Performance of high-throughput computational methods, such as the density functional tight binding (DFTB, GFN2-xTB) and the explicitly correlated dispersion-corrected Møller-Plesset perturbative method (MP2C-F12), are benchmarked against the consistent state-of-the-art calculations of conformational energies and interaction energies, respectively.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Vojtěch Štejfa
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
34
|
Geck RC, Foley JR, Murray Stewart T, Asara JM, Casero RA, Toker A. Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy. J Biol Chem 2020; 295:6263-6277. [PMID: 32139506 PMCID: PMC7212655 DOI: 10.1074/jbc.ra119.012376] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC.
Collapse
Affiliation(s)
- Renee C Geck
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
- Harvard Medical School, Boston, Massachusetts 02115
| | - Jackson R Foley
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - John M Asara
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Alex Toker
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
- Harvard Medical School, Boston, Massachusetts 02115
- Ludwig Center at Harvard, Boston, Massachusetts 02115
| |
Collapse
|
35
|
López-Contreras F, Muñoz-Uribe M, Pérez-Laines J, Ascencio-Leal L, Rivera-Dictter A, Martin-Martin A, Burgos RA, Alarcon P, López-Muñoz R. Searching for Drug Synergy Against Cancer Through Polyamine Metabolism Impairment: Insight Into the Metabolic Effect of Indomethacin on Lung Cancer Cells. Front Pharmacol 2020; 10:1670. [PMID: 32256343 PMCID: PMC7093016 DOI: 10.3389/fphar.2019.01670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most lethal and prevalent type of lung cancer. In almost all types of cancer, the levels of polyamines (putrescine, spermidine, and spermine) are increased, playing a pivotal role in tumor proliferation. Indomethacin, a non-steroidal anti-inflammatory drug, increases the abundance of an enzyme termed spermidine/spermine-N1-acetyltransferase (SSAT) encoded by the SAT1 gene. This enzyme is a key player in the export of polyamines from the cell. The aim of this study was to compare the effect of indomethacin on two NSCLC cell lines, and their combinatory potential with polyamine-inhibitor drugs in NSCLC cell lines. A549 and H1299 NSCLC cells were exposed to indomethacin and evaluations included SAT1 expression, SSAT levels, and the metabolic status of cells. Moreover, the difference in polyamine synthesis enzymes among these cell lines as well as the synergistic effect of indomethacin and chemical inhibitors of the polyamine pathway enzymes on cell viability were investigated. Indomethacin increased the expression of SAT1 and levels of SSAT in both cell lines. In A549 cells, it significantly reduced the levels of putrescine and spermidine. However, in H1299 cells, the impact of treatment on the polyamine pathway was insignificant. Also, the metabolic features upstream of the polyamine pathway (i.e., ornithine and methionine) were increased. In A549 cells, the increase of ornithine correlated with the increase of several metabolites involved in the urea cycle. Evaluation of the levels of the polyamine synthesis enzymes showed that ornithine decarboxylase is increased in A549 cells, whereas S-adenosylmethionine-decarboxylase and polyamine oxidase are increased in H1299 cells. This observation correlated with relative resistance to polyamine synthesis inhibitors eflornithine and SAM486 (inhibitors of ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, respectively), and MDL72527 (inhibitor of polyamine oxidase and spermine oxidase). Finally, indomethacin demonstrated a synergistic effect with MDL72527 in A549 cells and SAM486 in H1299 cells. Collectively, these results indicate that indomethacin alters polyamine metabolism in NSCLC cells and enhances the effect of polyamine synthesis inhibitors, such as MDL72527 or SAM486. However, this effect varies depending on the basal metabolic fingerprint of each type of cancer cell.
Collapse
Affiliation(s)
- Freddy López-Contreras
- Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile.,Facultad de Ciencias Veterinarias, Escuela de Graduados, Universidad Austral de Chile, Valdivia, Chile
| | - Matías Muñoz-Uribe
- Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Jorge Pérez-Laines
- Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Laura Ascencio-Leal
- Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Andrés Rivera-Dictter
- Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Antonia Martin-Martin
- Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcon
- Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo López-Muñoz
- Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
36
|
Van Meter EN, Onyango JA, Teske KA. A review of currently identified small molecule modulators of microRNA function. Eur J Med Chem 2020; 188:112008. [DOI: 10.1016/j.ejmech.2019.112008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
|
37
|
Ozden A, Angelos H, Feyza A, Elizabeth W, John P. Altered plasma levels of arginine metabolites in depression. J Psychiatr Res 2020; 120:21-28. [PMID: 31629205 DOI: 10.1016/j.jpsychires.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
L-Arginine pathway metabolites appear to play differential roles in the pathogenesis of major depressive disorder (MDD). Studies have revealed an antidepressant and anxiolytic effect of agmatine and putrescine. Possible mechanisms of these effects include inhibition of nitric oxide synthase and N-methyl-D-aspartate receptors. The present study sought to determine whether MDD is associated with altered levels of arginine metabolites and whether these metabolites are associated with depression, anxiety and stress severity. Seventy seven MDD patients 21-65 years of age with a minimum score of 18 on the Hamilton Depression Scale, and 27 age and sex matched healthy controls (HC) were included. Patients with uncontrolled physical diseases, abnormal routine lab tests, other psychiatric diagnoses, or under psychotropic medication were excluded. HC subjects were recruited from the community. Rating instruments included Hamilton Depression and Anxiety Scales, Beck Depression and Anxiety Inventory and Perceived Stress Scale. Fasting blood was drawn between 8:30 and 11:00 a.m. and High Performance Liquid Chromatography (HPLC) was used to measure plasma arginine metabolites. ADMA (Asymmetrical dimethylarginine) and putrescine were significantly lower while SDMA (Symmetric dimethylarginine), agmatine and ornithine were significantly higher in MDD patients (p˂0.05). Depression, anxiety and stress severity were negatively correlated with ADMA and putrescine (p˂0.05). Stress was positively correlated with citrulline, NOHA (N-omega-hydroxy-nor-l-arginine), SDMA, agmatine and ornithine (p˂0.05). Lower putrescine levels predicted depression diagnosis (p = 0.039) and depression severity (p = 0.003). Low ADMA level predicted depression severity as well. Arginine pathway metabolites are associated with the pathophysiology of depression. Putrescine may be a biomarker to predict MDD.
Collapse
Affiliation(s)
- Arisoy Ozden
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Psychiatry, Bolu Abant Izzet Baysal University Medical Faculty, Bolu, Turkey
| | - Halaris Angelos
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| | - Aricioglu Feyza
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Pharmacology, Faculty of Pharmacy and Psychopharmacology Research Unit, Marmara University, Haydarpasa, Istanbul, Turkey
| | - Wild Elizabeth
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Louisiana State University Health Sciences Center Shreveport, Department of Neurosurgery, USA
| | - Piletz John
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Biology, Missisipi College, Jackson, Missisipi, USA
| |
Collapse
|
38
|
Synthesis of homoagmatine and GC–MS analysis of tissue homoagmatine and agmatine: evidence that homoagmatine but not agmatine is a metabolite of pharmacological L-homoarginine in the anesthetized rat. Amino Acids 2019; 52:235-245. [DOI: 10.1007/s00726-019-02808-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
|
39
|
Martinis P, Grancara S, Kanamori Y, García-Argáez AN, Pacella E, Dalla Via L, Toninello A, Agostinelli E. Involvement of the biogenic active amine agmatine in mitochondrial membrane permeabilization and release of pro-apoptotic factors. Amino Acids 2019; 52:161-169. [DOI: 10.1007/s00726-019-02791-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
40
|
Tan X, Liu X, Zeng W, Zhang Z, Huang T, Yu L, Zhao G. Colorimetric sensing towards spermine based on supramolecular pillar[5]arene reduced and stabilized gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117176. [PMID: 31158763 DOI: 10.1016/j.saa.2019.117176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
We develop a novel and fast colorimetric sensing platform for spermine (Sp) by using macrocyclic host hydroxyl pillar[5]arene (P5) molecule reduced and stabilized Au nanoparticles via the supramolecular host-guest recognition interaction between P5 and Sp. The P5-modified Au nanoparticles (P5-Au) are easily obtained by redox reaction between hydroxyl groups in P5 and Au3+ in HAuCl4, where hydroxyl groups are oxidized to carboxyl groups and Au3+ is reduced to Au0+ under alkali catalysis at room temperature without NaBH4 or other reducing agent. A uniform diameter of about 5.0 nm and wine red color P5-Au nanoparticles can be synthesized by this green and rapid method. The mechanism of redox reaction between P5 and HAuCl4 is studied by the XPS and 13C NMR, and the P5-Au is characterized by the TEM, XRD and XPS.
Collapse
Affiliation(s)
- Xiaoping Tan
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, China.
| | - Xi Liu
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, China
| | - Wenjie Zeng
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, China
| | - Zhong Zhang
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, China
| | - Ting Huang
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, China
| | - Long Yu
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, China
| | - Genfu Zhao
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, China.
| |
Collapse
|
41
|
Muñoz-Esparza NC, Latorre-Moratalla ML, Comas-Basté O, Toro-Funes N, Veciana-Nogués MT, Vidal-Carou MC. Polyamines in Food. Front Nutr 2019; 6:108. [PMID: 31355206 PMCID: PMC6637774 DOI: 10.3389/fnut.2019.00108] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
The polyamines spermine, spermidine, and putrescine are involved in various biological processes, notably in cell proliferation and differentiation, and also have antioxidant properties. Dietary polyamines have important implications in human health, mainly in the intestinal maturation and in the differentiation and development of immune system. The antioxidant and anti-inflammatory effect of polyamine can also play an important role in the prevention of chronic diseases such as cardiovascular diseases. In addition to endogenous synthesis, food is an important source of polyamines. Although there are no recommendations for polyamine daily intake, it is known that in stages of rapid cell growth (i.e., in the neonatal period), polyamine requirements are high. Additionally, de novo synthesis of polyamines tends to decrease with age, which is why their dietary sources acquire a greater importance in an aging population. Polyamine daily intake differs among to the available estimations, probably due to different dietary patterns and methodologies of data collection. Polyamines can be found in all types of foods in a wide range of concentrations. Spermidine and spermine are naturally present in food whereas putrescine could also have a microbial origin. The main polyamine in plant-based products is spermidine, whereas spermine content is generally higher in animal-derived foods. This article reviews the main implications of polyamines for human health, as well as their content in food and breast milk and infant formula. In addition, the estimated levels of polyamines intake in different populations are provided.
Collapse
Affiliation(s)
- Nelly C. Muñoz-Esparza
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Luz Latorre-Moratalla
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Oriol Comas-Basté
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Natalia Toro-Funes
- Eurecat, Technological Unit of Nutrition and Health, Technology Centre of Catalonia, Reus, Spain
| | - M. Teresa Veciana-Nogués
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| |
Collapse
|
42
|
Hou Y, He W, Hu S, Wu G. Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 2019; 51:1153-1165. [PMID: 31197570 DOI: 10.1007/s00726-019-02751-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 12/29/2022]
Abstract
Dietary polyamines and amino acids (AAs) are crucial for human growth, development, reproduction, and health. However, the scientific literature shows large variations in polyamine and AA concentrations among major staple foods of plant origin, and there is a scarcity of information regarding their complete composition of AAs. To provide a much-needed database, we quantified polyamines, agmatine, and AAs in select plant-source foods. On the dry matter basis, total polyamines were most abundant in corn grains, followed by soybeans, sweet potatoes, pistachio nuts, potatoes, peanuts, wheat flour and white rice in descending order. Glutamine was the most abundant AA in pistachio nuts, wheat flour and white rice, arginine in peanuts, leucine in corn grains, glutamate in soybeans, and asparagine in potatoes and sweet potatoes. Glutamine was the second most abundant AA in corn grains, peanuts, potatoes, and soybeans, arginine in pistachio nuts, proline in wheat flour, and glutamate in sweet potatoes and white rice. Free AAs represented ≤ 3.1% of total AAs in corn grains, peanuts, pistachio nuts, soybeans, wheat flour and white rice, but 34.4% and 28.5% in potatoes and sweet potatoes, respectively. Asparagine accounted for 32.3%, 17.5%, and 19.4% of total free AAs in potatoes, sweet potatoes, and white rice, respectively. The content of histidine, glycine, lysine, tryptophan, methionine, cysteine, and threonine was relatively low in corn grains, potatoes, sweet potatoes, and white rice. All of the analyzed plant-source foods lacked taurine, creatine, carnosine and anserine (antioxidants that are abundant in meats and also present in milk), and contained little 4-hydroxyproline. Proper proportions of plant- and animal-source products are likely most desirable for optimizing human nutrition and health.
Collapse
Affiliation(s)
- Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wenliang He
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Shengdi Hu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
43
|
Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes. Proc Natl Acad Sci U S A 2019; 116:12540-12549. [PMID: 31152136 DOI: 10.1073/pnas.1902010116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tip-focused accumulation of reactive oxygen species (ROS) is tightly associated with pollen tube growth and is thus critical for fertilization. However, it is unclear how tip-growing cells establish such specific ROS localization. Polyamines have been proposed to function in tip growth as precursors of the ROS, hydrogen peroxide. The ABC transporter AtABCG28 may regulate ROS status, as it contains multiple cysteine residues, a characteristic of proteins involved in ROS homeostasis. In this study, we found that AtABCG28 was specifically expressed in the mature pollen grains and pollen tubes. AtABCG28 was localized to secretory vesicles inside the pollen tube that moved toward and fused with the plasma membrane of the pollen tube tip. Knocking out AtABCG28 resulted in defective pollen tube growth, failure to localize polyamine and ROS to the growing pollen tube tip, and complete male sterility, whereas ectopic expression of this gene in root hair could recover ROS accumulation at the tip and improved the growth under high-pH conditions, which normally prevent ROS accumulation and tip growth. Together, these data suggest that AtABCG28 is critical for localizing polyamine and ROS at the growing tip. In addition, this function of AtABCG28 is likely to protect the pollen tube from the cytotoxicity of polyamine and contribute to the delivery of polyamine to the growing tip for incorporation into the expanding cell wall.
Collapse
|
44
|
Paterson BM, Cullinane C, Crouch PJ, White AR, Barnham KJ, Roselt PD, Noonan W, Binns D, Hicks RJ, Donnelly PS. Modification of Biodistribution and Brain Uptake of Copper Bis(thiosemicarbazonato) Complexes by the Incorporation of Amine and Polyamine Functional Groups. Inorg Chem 2019; 58:4540-4552. [PMID: 30869878 DOI: 10.1021/acs.inorgchem.9b00117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of new bis(thiosemicarbazonato)copper(II) complexes featuring polyamine substituents via selective transamination reactions is presented. Polyamines of different lengths, with different ionizable substituent groups, were used to modify and adjust the hydrophilic/lipophilic balance of the copper complexes. The new analogues were radiolabeled with copper-64 and their lipophilicities estimated using distribution coefficients. The cell uptake of the new polyamine complexes was investigated with preliminary in vitro biological studies using a neuroblastoma cancer cell line. The in vivo biodistribution of three of the new analogues was investigated in vivo in mice using positron-emission tomography imaging, and one of the new complexes was compared to [64Cu]Cu(atsm) in an A431 squamous cell carcinoma xenograft model. Modification of the copper complexes with various amine-containing functional groups alters the biodistribution of the complexes in mice. One complex, with a pendent ( N, N-dimethylamino)ethane functional group, displayed tumor uptake similar to that of [64Cu]Cu(atsm) but higher brain uptake, suggesting that this compound has the potential to be of use in the diagnostic brain imaging of tumors and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Carleen Cullinane
- The Centre for Molecular Imaging and Translational Research Laboratory , The Peter MacCallum Cancer Centre , Melbourne , Victoria 3000 , Australia
| | | | | | | | - Peter D Roselt
- The Centre for Molecular Imaging and Translational Research Laboratory , The Peter MacCallum Cancer Centre , Melbourne , Victoria 3000 , Australia
| | - Wayne Noonan
- The Centre for Molecular Imaging and Translational Research Laboratory , The Peter MacCallum Cancer Centre , Melbourne , Victoria 3000 , Australia
| | - David Binns
- The Centre for Molecular Imaging and Translational Research Laboratory , The Peter MacCallum Cancer Centre , Melbourne , Victoria 3000 , Australia
| | - Rodney J Hicks
- The Centre for Molecular Imaging and Translational Research Laboratory , The Peter MacCallum Cancer Centre , Melbourne , Victoria 3000 , Australia
| | | |
Collapse
|
45
|
Vojtek M, Marques MPM, Ferreira IMPLVO, Mota-Filipe H, Diniz C. Anticancer activity of palladium-based complexes against triple-negative breast cancer. Drug Discov Today 2019; 24:1044-1058. [PMID: 30849441 DOI: 10.1016/j.drudis.2019.02.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 12/24/2022]
Abstract
Treatment of triple-negative breast carcinoma (TNBC) remains an unmet medical need with no targeted therapy available to date. Accounting for 10-30% of all human breast cancer tumors, this mammary carcinoma subtype has a particularly poor prognosis owing to its high metastatic potential, aggressive biology and limited pharmacological treatment options. Platinum chemotherapeutics are the mainstay therapy in patients with TNBC but their clinical use is limited by severe toxicity and acquired resistance. Palladium-based complexes are appealing alternative metal-based drugs because of significant similarities regarding structure and coordination chemistry with the platinum agents. This review summarizes the knowledge gathered so far on 121 Pd(II) complexes, emphasizing their anticancer activity and putative pharmacological targets toward TNBC.
Collapse
Affiliation(s)
- Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria P M Marques
- Unidade de I&D "Química-Física Molecular", Department of Chemistry, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Hélder Mota-Filipe
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
46
|
Giannopoulou PC, Missiri DA, Kournoutou GG, Sazakli E, Papadopoulos GE, Papaioannou D, Dinos GP, Athanassopoulos CM, Kalpaxis DL. New Chloramphenicol Derivatives from the Viewpoint of Anticancer and Antimicrobial Activity. Antibiotics (Basel) 2019; 8:antibiotics8010009. [PMID: 30699905 PMCID: PMC6466596 DOI: 10.3390/antibiotics8010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022] Open
Abstract
Over the last years, we have been focused on chloramphenicol conjugates that combine in their structure chloramphenicol base with natural polyamines, spermine, spermidine and putrescine, and their modifications. Conjugate 3, with spermidine (SPD) as a natural polyamine linked to chloramphenicol base, showed the best antibacterial and anticancer properties. Using 3 as a prototype, we here explored the influence of the antibacterial and anticancer activity of additional benzyl groups on N1 amino moiety together with modifications of the alkyl length of the aminobutyl fragment of SPD. Our data demonstrate that the novel modifications did not further improve the antibacterial activity of the prototype. However, one of the novel conjugates (4) showed anticancer activity without affecting bacterial growth, thus emerging as a promising anticancer agent, with no adverse effects on bacterial microflora when taken orally.
Collapse
Affiliation(s)
| | - Dionissia A Missiri
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece.
| | - Georgia G Kournoutou
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| | - Eleni Sazakli
- Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras, Greece.
| | - Georgios E Papadopoulos
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, GR-41500 Larissa, Greece.
| | - Dionissios Papaioannou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece.
| | - George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| | | | - Dimitrios L Kalpaxis
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| |
Collapse
|
47
|
Rocha RO, Wilson RA. Essential, deadly, enigmatic: Polyamine metabolism and roles in fungal cells. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Molecular Factors of Hypochlorite Tolerance in the Hypersaline Archaeon Haloferax volcanii. Genes (Basel) 2018; 9:genes9110562. [PMID: 30463375 PMCID: PMC6267482 DOI: 10.3390/genes9110562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
Halophilic archaea thrive in hypersaline conditions associated with desiccation, ultraviolet (UV) irradiation and redox active compounds, and thus are naturally tolerant to a variety of stresses. Here, we identified mutations that promote enhanced tolerance of halophilic archaea to redox-active compounds using Haloferax volcanii as a model organism. The strains were isolated from a library of random transposon mutants for growth on high doses of sodium hypochlorite (NaOCl), an agent that forms hypochlorous acid (HOCl) and other redox acid compounds common to aqueous environments of high concentrations of chloride. The transposon insertion site in each of twenty isolated clones was mapped using the following: (i) inverse nested two-step PCR (INT-PCR) and (ii) semi-random two-step PCR (ST-PCR). Genes that were found to be disrupted in hypertolerant strains were associated with lysine deacetylation, proteasomes, transporters, polyamine biosynthesis, electron transfer, and other cellular processes. Further analysis revealed a ΔpsmA1 (α1) markerless deletion strain that produces only the α2 and β proteins of 20S proteasomes was hypertolerant to hypochlorite stress compared with wild type, which produces α1, α2, and β proteins. The results of this study provide new insights into archaeal tolerance of redox active compounds such as hypochlorite.
Collapse
|
49
|
Hu T, Sun D, Zhang J, Xue R, Janssen HLA, Tang W, Dong L. Spermine oxidase is upregulated and promotes tumor growth in hepatocellular carcinoma. Hepatol Res 2018; 48:967-977. [PMID: 29923661 DOI: 10.1111/hepr.13206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
AIM The polyamine catabolic enzyme, spermine oxidase (SMOX) is upregulated in chronic inflammatory conditions and linked to increased reactive oxygen species and DNA damage in various forms of cancers. The present study aims to explore the expression pattern and biological function of SMOX in hepatocellular carcinoma (HCC). METHODS We used quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry to examine SMOX expression in four HCC cell lines and 120 HCC clinical samples, and the clinical significance of SMOX was analyzed. The biological function of SMOX on HCC cells was detected both in vitro and in vivo. RESULTS Results showed that SMOX was overexpressed in HCC cell lines and clinical HCC tissues. Moreover, SMOX expression levels were gradually increased in normal liver, chronic hepatitis, and HCC tissues. Increased SMOX expression was correlated with poor clinical features of HCC. Patients with positive SMOX expression in tumor tissues indicated worse overall survival (P = 0.008) and shorter relapse-free survival (P = 0.002). Knockdown of SMOX inhibited HCC cell proliferation, arrested cell cycle at S phase, and resulted in an increase of apoptosis. The in vivo study showed that inhibition of SMOX in HCC cells significantly repressed tumor growth in nude mice. Furthermore, we showed that SMOX might exert its function by regulating the phosphatidylinositol 3'-kinase/protein kinase B signaling pathway. CONCLUSION Our data indicated that SMOX upregulation could be a critical oncogene in HCC and might serve as a valuable prognostic marker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dalong Sun
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Zhang
- Department of Otolaryngology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Toronto Center for Liver Disease, Toronto Western and General Hospital, University Health Network, Toronto, Canada
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Zhang Q, Xu H, Liu R, Gao P, Yang X, Li P, Wang X, Zhang Y, Bi K, Li Q. Highly Sensitive Quantification Method for Amine Submetabolome Based on AQC-Labeled-LC-Tandem-MS and Multiple Statistical Data Mining: A Potential Cancer Screening Approach. Anal Chem 2018; 90:11941-11948. [PMID: 30208276 DOI: 10.1021/acs.analchem.8b02372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The relationship between amine submetabolome and cancer has been increasingly investigated. However, no study was performed to evaluate the current methods of amine submetabolomics comprehensively, or to use such quantification results to provide an applicable approach for cancer screening. In this study, a highly sensitive and practical workflow for quantifying amine submetabolome, which was based on 6-aminoquinolyl- N-hydroxysuccinimidyl carbamate (AQC)-labeled-HPLC-MS/MS analysis combined with multiple statistical data processing approach, was established and optimized. Comparison and optimization of two analytical approaches, HILIC separation and precolumn derivatization, and three types of surrogate matrices of plasma were performed systematically. The detection sensitivities of AQC-labeled amines were increased by 50-1000-fold compared with the underivatization-HILIC method. Surrogate matrix was also used to verify the method after a large dilution factor was employed. In data analysis, the specific amino-index for each cancer sample was identified and validated by univariate receiver operating characteristic (ROC) curve analysis, partial least-squares discrimination analysis (PLS-DA), and multivariate ROC curve analysis. These amino indexes were innovatively quantified by multiplying the raised markers and dividing the reduced markers. As a result, the numerical intervals of amino indexes for healthy volunteers and cancer patients were provided, and their clinical value was also improved. Finally, the integrated workflow successfully differentiated the value of the amino index for plasma of lung, breast, colorectal, and gastric cancer samples from controls and among different types of cancer. Furthermore, it was also used to evaluate therapeutic effects. Taken together, the developed methodology, which was characterized by high sensitivity, high throughput, and high practicality, is suitable for amine submetabolomics in studying cancer biomarkers and could also be applied in many other clinical and epidemiological research.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Huarong Xu
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Ran Liu
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Peng Gao
- Metabolomics Core Facility of RHLCCC , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Xiao Yang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Pei Li
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Xiaotong Wang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Yiwen Zhang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Kaishun Bi
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Qing Li
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| |
Collapse
|