1
|
Kina UY, Kamil M, Deveci G, Rafiqi AM, Matuschewski K, Aly ASI. A Candidate Bacterial-Type Amino Acid Decarboxylase Is Essential for Male Gamete Exflagellation and Mosquito Transmission of the Malaria Parasite. Infect Immun 2023; 91:e0016723. [PMID: 37260388 PMCID: PMC10353352 DOI: 10.1128/iai.00167-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/02/2023] Open
Abstract
A frequent side effect of chemotherapy against malaria parasite blood infections is a dramatic induction of the sexual blood stages, thereby enhancing the risk of future malaria transmissions. The polyamine biosynthesis pathway has been suggested as a candidate target for transmission-blocking anti-malarial drug development. Herein, we describe the role of a bacterial-type amino acid decarboxylase (AAD) in the life cycle of the malaria model parasite Plasmodium yoelii. Hallmarks of AAD include a conserved catalytic lysine residue and high-level homology to arginine/lysine/ornithine decarboxylases of pathogenic bacteria. By targeted gene deletion, we show that AAD plays an essential role in the exflagellation of microgametes, resulting in complete absence of sporozoites in the mosquito vector. These data highlight the central role of the biosysthesis of polyamines in the final steps of male gamete sexual development of the malaria parasite and, hence, onward transmission to mosquitoes.
Collapse
Affiliation(s)
- Umit Y. Kina
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - Mohd Kamil
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Gozde Deveci
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Ab. Matteen Rafiqi
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Ahmed S. I. Aly
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- School of Science and Engineering, Al Akhawayn University, Ifrane, Morocco
| |
Collapse
|
2
|
Multi Platforms Strategies and Metabolomics Approaches for the Investigation of Comprehensive Metabolite Profile in Dogs with Babesia canis Infection. Int J Mol Sci 2022; 23:ijms23031575. [PMID: 35163517 PMCID: PMC8835742 DOI: 10.3390/ijms23031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Canine babesiosis is an important tick-borne disease worldwide, caused by parasites of the Babesia genus. Although the disease process primarily affects erythrocytes, it may also have multisystemic consequences. The goal of this study was to explore and characterize the serum metabolome, by identifying potential metabolites and metabolic pathways in dogs naturally infected with Babesia canis using liquid and gas chromatography coupled to mass spectrometry. The study included 12 dogs naturally infected with B. canis and 12 healthy dogs. By combining three different analytical platforms using untargeted and targeted approaches, 295 metabolites were detected. The untargeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) metabolomics approach identified 64 metabolites, the targeted UHPLC-MS/MS metabolomics approach identified 205 metabolites, and the GC-MS metabolomics approach identified 26 metabolites. Biological functions of differentially abundant metabolites indicate the involvement of various pathways in canine babesiosis including the following: glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; cysteine and methionine metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis. This study confirmed that host–pathogen interactions could be studied by metabolomics to assess chemical changes in the host, such that the differences in serum metabolome between dogs with B. canis infection and healthy dogs can be detected with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Our study provides novel insight into pathophysiological mechanisms of B. canis infection.
Collapse
|
3
|
Zhou M, Varol A, Efferth T. Multi-omics approaches to improve malaria therapy. Pharmacol Res 2021; 167:105570. [PMID: 33766628 DOI: 10.1016/j.phrs.2021.105570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
Malaria contributes to the most widespread infectious diseases worldwide. Even though current drugs are commercially available, the ever-increasing drug resistance problem by malaria parasites poses new challenges in malaria therapy. Hence, searching for efficient therapeutic strategies is of high priority in malaria control. In recent years, multi-omics technologies have been extensively applied to provide a more holistic view of functional principles and dynamics of biological mechanisms. We briefly review multi-omics technologies and focus on recent malaria progress conducted with the help of various omics methods. Then, we present up-to-date advances for multi-omics approaches in malaria. Next, we describe resistance phenomena to established antimalarial drugs and underlying mechanisms. Finally, we provide insight into novel multi-omics approaches, new drugs and vaccine developments and analyze current gaps in multi-omics research. Although multi-omics approaches have been successfully used in malaria studies, they are still limited. Many gaps need to be filled to bridge the gap between basic research and treatment of malaria patients. Multi-omics approaches will foster a better understanding of the molecular mechanisms of Plasmodium that are essential for the development of novel drugs and vaccines to fight this disastrous disease.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
4
|
Moriyama Y, Hatano R, Moriyama S, Uehara S. Vesicular polyamine transporter as a novel player in amine-mediated chemical transmission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183208. [PMID: 32004521 DOI: 10.1016/j.bbamem.2020.183208] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
The solute carrier 18B1 (SLC18B1) is the most recently identified gene of the vesicular amine transporter family and is conserved in the animal kingdom from insects to humans. Proteoliposomes containing the purified human SLC18B1 protein transport not only monoamines, but also polyamines, such as spermidine (Spd) and spermine (Spm), using an electrochemical gradient of H+ established by vacuolar H+-ATPase (V-ATPase) as the driving force. SLC18B1 gene knockdown abolished the exocytosis of polyamines from mast cells, which affected the secretion of histamine. SLC18B1 gene knockout decreased polyamine levels by ~20% in the brain, and impaired short- and long-term memory. Thus, the SLC18B1 protein is responsible for the vesicular storage and release of polyamines, and functions as a vesicular polyamine transporter (VPAT). VPAT may define when, where, and how polyamine-mediated chemical transmission occurs, providing insights into the more versatile and complex features of amine-mediated chemical transmission than currently considered.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; CYRIC Tohoku University, Sendai 980-8578, Japan.
| | - Ryo Hatano
- Department of Medicinal Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Satomi Moriyama
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara 634-8521, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| |
Collapse
|
5
|
Aroonsri A, Posayapisit N, Kongsee J, Siripan O, Vitsupakorn D, Utaida S, Uthaipibull C, Kamchonwongpaisan S, Shaw PJ. Validation of Plasmodium falciparum deoxyhypusine synthase as an antimalarial target. PeerJ 2019; 7:e6713. [PMID: 31024761 PMCID: PMC6475138 DOI: 10.7717/peerj.6713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/05/2019] [Indexed: 11/20/2022] Open
Abstract
Background Hypusination is an essential post-translational modification in eukaryotes. The two enzymes required for this modification, namely deoxyhypusine synthase (DHS) and deoxyhypusine hydrolase are also conserved. Plasmodium falciparum human malaria parasites possess genes for both hypusination enzymes, which are hypothesized to be targets of antimalarial drugs. Methods Transgenic P. falciparum parasites with modification of the PF3D7_1412600 gene encoding PfDHS enzyme were created by insertion of the glmS riboswitch or the M9 inactive variant. The PfDHS protein was studied in transgenic parasites by confocal microscopy and Western immunoblotting. The biochemical function of PfDHS enzyme in parasites was assessed by hypusination and nascent protein synthesis assays. Gene essentiality was assessed by competitive growth assays and chemogenomic profiling. Results Clonal transgenic parasites with integration of glmS riboswitch downstream of the PfDHS gene were established. PfDHS protein was present in the cytoplasm of transgenic parasites in asexual stages. The PfDHS protein could be attenuated fivefold in transgenic parasites with an active riboswitch, whereas PfDHS protein expression was unaffected in control transgenic parasites with insertion of the riboswitch-inactive sequence. Attenuation of PfDHS expression for 72 h led to a significant reduction of hypusinated protein; however, global protein synthesis was unaffected. Parasites with attenuated PfDHS expression showed a significant growth defect, although their decline was not as rapid as parasites with attenuated dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) expression. PfDHS-attenuated parasites showed increased sensitivity to N 1-guanyl-1,7-diaminoheptane, a structural analog of spermidine, and a known inhibitor of DHS enzymes. Discussion Loss of PfDHS function leads to reduced hypusination, which may be important for synthesis of some essential proteins. The growth defect in parasites with attenuated Pf DHS expression suggests that this gene is essential. However, the slower decline of PfDHS mutants compared with PfDHFR-TS mutants in competitive growth assays suggests that PfDHS is less vulnerable as an antimalarial target. Nevertheless, the data validate PfDHS as an antimalarial target which can be inhibited by spermidine-like compounds.
Collapse
Affiliation(s)
- Aiyada Aroonsri
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Navaporn Posayapisit
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jindaporn Kongsee
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Onsiri Siripan
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Danoo Vitsupakorn
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sugunya Utaida
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Chairat Uthaipibull
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sumalee Kamchonwongpaisan
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Philip J Shaw
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
6
|
El Bissati K, Redel H, Ting LM, Lykins JD, McPhillie MJ, Upadhya R, Woster PM, Yarlett N, Kim K, Weiss LM. Novel Synthetic Polyamines Have Potent Antimalarial Activities in vitro and in vivo by Decreasing Intracellular Spermidine and Spermine Concentrations. Front Cell Infect Microbiol 2019; 9:9. [PMID: 30838177 PMCID: PMC6382690 DOI: 10.3389/fcimb.2019.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/14/2019] [Indexed: 01/09/2023] Open
Abstract
Twenty-two compounds belonging to several classes of polyamine analogs have been examined for their ability to inhibit the growth of the human malaria parasite Plasmodium falciparum in vitro and in vivo. Four lead compounds from the thiourea sub-series and one compound from the urea-based analogs were found to be potent inhibitors of both chloroquine-resistant (Dd2) and chloroquine-sensitive (3D7) strains of Plasmodium with IC50 values ranging from 150 to 460 nM. In addition, the compound RHW, N1,N7-bis (3-(cyclohexylmethylamino) propyl) heptane-1,7-diamine tetrabromide was found to inhibit Dd2 with an IC50 of 200 nM. When RHW was administered to P. yoelii-infected mice at 35 mg/kg for 4 days, it significantly reduced parasitemia. RHW was also assayed in combination with the ornithine decarboxylase inhibitor difluoromethylornithine, and the two drugs were found not to have synergistic antimalarial activity. Furthermore, these inhibitors led to decreased cellular spermidine and spermine levels in P. falciparum, suggesting that they exert their antimalarial activities by inhibition of spermidine synthase.
Collapse
Affiliation(s)
- Kamal El Bissati
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL, United States
| | - Henry Redel
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Li-Min Ting
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Joseph D Lykins
- Department of Internal Medicine and Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, United States
| | | | - Rajendra Upadhya
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Nigel Yarlett
- Haskins Laboratories, Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Louis M Weiss
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
7
|
Silva LS, Prado GC, Quintana PG, Heise N, Miranda KR, Torres EJL, Persechini PM, de Sá Pinheiro AA, Schachter J. Plasmodium falciparum invasion and intraerythrocytic development are impaired by 2', 3'-dialdehyde adenosine. Microbes Infect 2017; 20:205-211. [PMID: 29253662 DOI: 10.1016/j.micinf.2017.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 11/25/2022]
Abstract
Purine nucleotide synthesis in protozoa takes place exclusively via the purine salvage pathway and S-adenosyl-l-homocysteine hydrolase (SAHH) is an important enzyme in the Plasmodium salvage pathway which is not present in erythrocytes. Here, we describe the antimalarial effect of 2'3'-dialdehyde adenosine or oxidized adenosine (oADO), inhibitor of SAHH, on in vitro infection of human erythrocytes by P. falciparum. Treatment of infected erythrocytes with oADO inhibits parasite development and reinvasion of new cells. Erythrocytes pre-treated with oADO have a reduced susceptibility to invasion. Our results suggest that oADO interferes with one or more parasitic enzymes of the purine salvage pathway.
Collapse
Affiliation(s)
- Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gustavo C Prado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paula G Quintana
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Kildare R Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo J L Torres
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pedro M Persechini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Acacia de Sá Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julieta Schachter
- Polo Xerém, Duque de Caxias, Universidade Federal Do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Rojas-Martínez C, Rodríguez-Vivas RI, Figueroa Millán JV, Acosta Viana KY, Gutiérrez Ruíz EJ, Bautista-Garfias CR, Lira-Amaya JJ, Polanco-Martínez DJ, Álvarez Martínez JA. Babesia bigemina: Advances in continuous in vitro culture using serum-free medium supplemented with insulin, transferrin, selenite, and putrescine. Parasitol Int 2017; 67:294-301. [PMID: 29199117 DOI: 10.1016/j.parint.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/21/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Carmen Rojas-Martínez
- CENID-Parasitología Veterinaria INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso, Jiutepec, Morelos C.P. 62550, Mexico; Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, km. 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Roger I Rodríguez-Vivas
- Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, km. 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Julio V Figueroa Millán
- CENID-Parasitología Veterinaria INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| | - Karla Y Acosta Viana
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Av. Itzáes No. 490 x 59 Col. Centro, C.P.97000 Mérida, Yucatán, Mexico
| | - Edwin J Gutiérrez Ruíz
- Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, km. 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Carlos R Bautista-Garfias
- CENID-Parasitología Veterinaria INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| | - José J Lira-Amaya
- CENID-Parasitología Veterinaria INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| | - Diego J Polanco-Martínez
- CENID-Parasitología Veterinaria INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| | - Jesús A Álvarez Martínez
- CENID-Parasitología Veterinaria INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso, Jiutepec, Morelos C.P. 62550, Mexico.
| |
Collapse
|
9
|
Rojas-Martínez C, Rodríguez-Vivas R, Figueroa Millán J, Acosta Viana K, Gutiérrez Ruiz E, Álvarez Martínez J. Putrescine: Essential factor for in vitro proliferation of Babesia bovis. Exp Parasitol 2017; 175:79-84. [DOI: 10.1016/j.exppara.2017.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/19/2016] [Accepted: 01/27/2017] [Indexed: 01/12/2023]
|
10
|
Wallqvist A, Fang X, Tewari SG, Ye P, Reifman J. Metabolic host responses to malarial infection during the intraerythrocytic developmental cycle. BMC SYSTEMS BIOLOGY 2016; 10:58. [PMID: 27502771 PMCID: PMC4977726 DOI: 10.1186/s12918-016-0291-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/16/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND The malarial parasite Plasmodium falciparum undergoes a complex life cycle, including an intraerythrocytic developmental cycle, during which it is metabolically dependent on the infected human red blood cell (RBC). To describe whole cell metabolic activity within both P. falciparum and RBCs during the asexual reproduction phase of the intraerythrocytic developmental cycle, we developed an integrated host-parasite metabolic modeling framework driven by time-dependent gene expression data. RESULTS We validated the model by reproducing the experimentally determined 1) stage-specific production of biomass components and their precursors in the parasite and 2) metabolite concentration changes in the medium of P. falciparum-infected RBC cultures. The model allowed us to explore time- and strain-dependent P. falciparum metabolism and hypothesize how host cell metabolism alters in response to malarial infection. Specifically, the metabolic analysis showed that uninfected RBCs that coexist with infected cells in the same culture decrease their production of 2,3-bisphosphoglycerate, an oxygen-carrying regulator, reducing the ability of hemoglobin in these cells to release oxygen. Furthermore, in response to parasite-induced oxidative stress, infected RBCs downgraded their glycolytic flux by using the pentose phosphate pathway and secreting ribulose-5-phosphate. This mechanism links individually observed experimental phenomena, such as glycolytic inhibition and ribulose-5-phosphate secretion, to the oxidative stress response. CONCLUSIONS Although the metabolic model does not incorporate regulatory mechanisms per se, alterations in gene expression levels caused by regulatory mechanisms are manifested in the model as altered metabolic states. This provides the model the capability to capture complex multicellular host-pathogen metabolic interactions of the infected RBC culture. The system-level analysis revealed complex relationships such as how the parasite can reduce oxygen release in uninfected cells in the presence of infected RBCs as well as the role of different metabolic pathways involved in the oxidative stress response of infected RBCs.
Collapse
Affiliation(s)
- Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD, 21702, USA
| | - Xin Fang
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD, 21702, USA
| | - Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD, 21702, USA
| | - Ping Ye
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD, 21702, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD, 21702, USA.
| |
Collapse
|
11
|
Abstract
Polyamines are primordial polycations found in most cells and perform different functions in different organisms. Although polyamines are mainly known for their essential roles in cell growth and proliferation, their functions range from a critical role in cellular translation in eukaryotes and archaea, to bacterial biofilm formation and specialized roles in natural product biosynthesis. At first glance, the diversity of polyamine structures in different organisms appears chaotic; however, biosynthetic flexibility and evolutionary and ecological processes largely explain this heterogeneity. In this review, I discuss the biosynthetic, evolutionary, and physiological processes that constrain or expand polyamine structural and functional diversity.
Collapse
Affiliation(s)
- Anthony J Michael
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
12
|
Wang L, Delahunty C, Prieto JH, Rahlfs S, Jortzik E, Yates JR, Becker K. Protein S-nitrosylation in Plasmodium falciparum. Antioxid Redox Signal 2014; 20:2923-35. [PMID: 24256207 PMCID: PMC4039001 DOI: 10.1089/ars.2013.5553] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Due to its life in different hosts and environments, the human malaria parasite Plasmodium falciparum is exposed to oxidative and nitrosative challenges. Nitric oxide (NO) and NO-derived reactive nitrogen species can constitute nitrosative stress and play a major role in NO-related signaling. However, the mode of action of NO and its targets in P. falciparum have hardly been characterized. Protein S-nitrosylation (SNO), a posttranslational modification of protein cysteine thiols, has emerged as a principal mechanism by which NO exerts diverse biological effects. Despite its potential importance, SNO has hardly been studied in human malaria parasites. Using a biotin-switch approach coupled to mass spectrometry, we systemically studied SNO in P. falciparum cell extracts. RESULTS We identified 319 potential targets of SNO that are widely distributed throughout various cellular pathways. Glycolysis in the parasite was found to be a major target, with glyceraldehyde-3-phosphate dehydrogenase being strongly inhibited by S-nitrosylation of its active site cysteine. Furthermore, we show that P. falciparum thioredoxin 1 (PfTrx1) can be S-nitrosylated at its nonactive site cysteine (Cys43). Mechanistic studies indicate that PfTrx1 possesses both denitrosylating and transnitrosylating activities mediated by its active site cysteines and Cys43, respectively. INNOVATION This work provides first insights into the S-nitrosoproteome of P. falciparum and suggests that the malaria parasite employs the thioredoxin system to deal with nitrosative challenges. CONCLUSION Our results indicate that SNO may influence a variety of metabolic processes in P. falciparum and contribute to our understanding of NO-related signaling processes and cytotoxicity in the parasites.
Collapse
Affiliation(s)
- Lihui Wang
- 1 Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University , Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Cai H, Hong C, Gu J, Lilburn TG, Kuang R, Wang Y. Module-based subnetwork alignments reveal novel transcriptional regulators in malaria parasite Plasmodium falciparum. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S5. [PMID: 23282319 PMCID: PMC3524314 DOI: 10.1186/1752-0509-6-s3-s5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Malaria causes over one million deaths annually, posing an enormous health and economic burden in endemic regions. The completion of genome sequencing of the causative agents, a group of parasites in the genus Plasmodium, revealed potential drug and vaccine candidates. However, genomics-driven target discovery has been significantly hampered by our limited knowledge of the cellular networks associated with parasite development and pathogenesis. In this paper, we propose an approach based on aligning neighborhood PPI subnetworks across species to identify network components in the malaria parasite P. falciparum. Results Instead of only relying on sequence similarities to detect functional orthologs, our approach measures the conservation between the neighborhood subnetworks in protein-protein interaction (PPI) networks in two species, P. falciparum and E. coli. 1,082 P. falciparum proteins were predicted as functional orthologs of known transcriptional regulators in the E. coli network, including general transcriptional regulators, parasite-specific transcriptional regulators in the ApiAP2 protein family, and other potential regulatory proteins. They are implicated in a variety of cellular processes involving chromatin remodeling, genome integrity, secretion, invasion, protein processing, and metabolism. Conclusions In this proof-of-concept study, we demonstrate that a subnetwork alignment approach can reveal previously uncharacterized members of the subnetworks, which opens new opportunities to identify potential therapeutic targets and provide new insights into parasite biology, pathogenesis and virulence. This approach can be extended to other systems, especially those with poor genome annotation and a paucity of knowledge about cellular networks.
Collapse
Affiliation(s)
- Hong Cai
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
14
|
Cai H, Zhou Z, Gu J, Wang Y. Comparative Genomics and Systems Biology of Malaria Parasites Plasmodium.. Curr Bioinform 2012; 7. [PMID: 24298232 DOI: 10.2174/157489312803900965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malaria is a serious infectious disease that causes over one million deaths yearly. It is caused by a group of protozoan parasites in the genus Plasmodium. No effective vaccine is currently available and the elevated levels of resistance to drugs in use underscore the pressing need for novel antimalarial targets. In this review, we survey omics centered developments in Plasmodium biology, which have set the stage for a quantum leap in our understanding of the fundamental processes of the parasite life cycle and mechanisms of drug resistance and immune evasion.
Collapse
Affiliation(s)
- Hong Cai
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
15
|
Caminos AP, Panozzo-Zenere EA, Wilkinson SR, Tekwani BL, Labadie GR. Synthesis and antikinetoplastid activity of a series of N,N′-substituted diamines. Bioorg Med Chem Lett 2012; 22:1712-5. [DOI: 10.1016/j.bmcl.2011.12.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 02/06/2023]
|
16
|
Cassera MB, Hazleton KZ, Merino EF, Obaldia N, Ho MC, Murkin AS, DePinto R, Gutierrez JA, Almo SC, Evans GB, Babu YS, Schramm VL. Plasmodium falciparum parasites are killed by a transition state analogue of purine nucleoside phosphorylase in a primate animal model. PLoS One 2011; 6:e26916. [PMID: 22096507 PMCID: PMC3214022 DOI: 10.1371/journal.pone.0026916] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/05/2011] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-G (BCX4945) is a transition state analogue of human and Plasmodium PNPs, binding with picomolar affinity. Here, we test BCX4945 in Aotus primates, an animal model for Plasmodium falciparum infections. Oral administration of BCX4945 for seven days results in parasite clearance and recrudescence in otherwise lethal infections of P. falciparum in Aotus monkeys. The molecular action of BCX4945 is demonstrated in crystal structures of human and P. falciparum PNPs. Metabolite analysis demonstrates that PNP blockade inhibits purine salvage and polyamine synthesis in the parasites. The efficacy, oral availability, chemical stability, unique mechanism of action and low toxicity of BCX4945 demonstrate potential for combination therapies with this novel antimalarial agent.
Collapse
Affiliation(s)
- María B. Cassera
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Keith Z. Hazleton
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Emilio F. Merino
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Nicanor Obaldia
- Tropical Medicine Research, Malaria Drug and Vaccine Evaluation Center, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Meng-Chiao Ho
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Andrew S. Murkin
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
- Department of Chemistry, University at Buffalo, Buffalo, New York, United State of America
| | - Richard DePinto
- Waters Corporation, Parsippany, New Jersey, United State of America
| | - Jemy A. Gutierrez
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
| | - Gary B. Evans
- Carbohydrate Chemistry Group, Industrial Research Ltd., Lower Hutt, New Zealand
| | - Yarlagadda S. Babu
- Department of Biological Sciences, BioCryst Pharmaceuticals Inc., Birmingham, Alabama, United State of America
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United State of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
New drugs are urgently needed for the treatment of tropical and subtropical parasitic diseases, such as African sleeping sickness, Chagas' disease, leishmaniasis and malaria. Enzymes in polyamine biosynthesis and thiol metabolism, as well as polyamine transporters, are potential drug targets within these organisms. In the present review, the current knowledge of unique properties of polyamine metabolism in these parasites is outlined. These properties include prozyme regulation of AdoMetDC (S-adenosylmethionine decarboxylase) activity in trypanosomatids, co-expression of ODC (ornithine decarboxylase) and AdoMetDC activities in a single protein in plasmodia, and formation of trypanothione, a unique compound linking polyamine and thiol metabolism in trypanosomatids. Particularly interesting features within polyamine metabolism in these parasites are highlighted for their potential in selective therapeutic strategies.
Collapse
|
18
|
Verlinden BK, Niemand J, Snyman J, Sharma SK, Beattie RJ, Woster PM, Birkholtz LM. Discovery of novel alkylated (bis)urea and (bis)thiourea polyamine analogues with potent antimalarial activities. J Med Chem 2011; 54:6624-33. [PMID: 21882831 DOI: 10.1021/jm200463z] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of alkylated (bis)urea and (bis)thiourea polyamine analogues were synthesized and screened for antimalarial activity against chloroquine-sensitive and -resistant strains of Plasmodium falciparum in vitro. All analogues showed growth inhibitory activity against P. falciparum at less than 3 μM, with the majority having effective IC(50) values in the 100-650 nM range. Analogues arrested parasitic growth within 24 h of exposure due to a block in nuclear division and therefore asexual development. Moreover, this effect appears to be cytotoxic and highly selective to malaria parasites (>7000-fold lower IC(50) against P. falciparum) and is not reversible by the exogenous addition of polyamines. With this first report of potent antimalarial activity of polyamine analogues containing 3-7-3 or 3-6-3 carbon backbones and substituted terminal urea- or thiourea moieties, we propose that these compounds represent a structurally novel class of antimalarial agents.
Collapse
Affiliation(s)
- Bianca K Verlinden
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, PO Box x20, Pretoria, 0028, South Africa
| | | | | | | | | | | | | |
Collapse
|
19
|
Tissue-specific alternative splicing of spermidine/spermine N1-acetyltransferase. Amino Acids 2011; 42:485-93. [PMID: 21809078 DOI: 10.1007/s00726-011-1027-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/02/2011] [Indexed: 10/17/2022]
Abstract
The polyamines, spermidine and spermine, are abundant organic cations participating in many important cellular processes. We have previously shown that the rate-limiting enzyme of polyamine catabolism, spermidine/spermine N(1)-acetyltransferase (SSAT), has an alternative mRNA splice variant (SSATX) which undergoes degradation via nonsense-mediated mRNA decay (NMD) pathway, and that the intracellular polyamine level regulates the ratio of the SSATX and SSAT splice variants. The aim of this study was to investigate the effect of SSATX level manipulation on SSAT activity in cell culture, and to examine the in vivo expression levels of SSATX and SSAT mRNA. Silencing SSATX expression with small interfering RNA led to increased SSAT activity. Furthermore, transfection of SSAT-deficient cells with mutated SSAT gene (which produced only trace amount of SSATX) yielded higher SSAT activity than transfection with natural SSAT gene (which produced both SSAT and SSATX). Blocking NMD in vivo by protein synthesis inhibitor cycloheximide resulted in accumulation of SSATX mRNA, and like in cell culture, the increase of SSATX mRNA was prevented by administration of polyamine analog N(1),N(11)-diethylnorspermine. Although SSATX/total SSAT mRNA ratio did not correlate with polyamine levels or SSAT activity between different tissues, increasing polyamine levels in a given tissue led to decreased SSATX/total SSAT mRNA ratio and vice versa. Taken together, the regulated unproductive splicing and translation of SSAT has a physiological relevance in modulating SSAT activity. However, in addition to polyamine level there seems to be additional factors regulating tissue-specific alternative splicing of SSAT.
Collapse
|
20
|
Foth BJ, Zhang N, Chaal BK, Sze SK, Preiser PR, Bozdech Z. Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 2011; 10:M110.006411. [PMID: 21558492 DOI: 10.1074/mcp.m110.006411] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of the Plasmodium falciparum transcriptome have shown that the tightly controlled progression of the parasite through the intra-erythrocytic developmental cycle (IDC) is accompanied by a continuous gene expression cascade in which most expressed genes exhibit a single transcriptional peak. Because the biochemical and cellular functions of most genes are mediated by the encoded proteins, understanding the relationship between mRNA and protein levels is crucial for inferring biological activity from transcriptional gene expression data. Although studies on other organisms show that <50% of protein abundance variation may be attributable to corresponding mRNA levels, the situation in Plasmodium is further complicated by the dynamic nature of the cyclic gene expression cascade. In this study, we simultaneously determined mRNA and protein abundance profiles for P. falciparum parasites during the IDC at 2-hour resolution based on oligonucleotide microarrays and two-dimensional differential gel electrophoresis protein gels. We find that most proteins are represented by more than one isoform, presumably because of post-translational modifications. Like transcripts, most proteins exhibit cyclic abundance profiles with one peak during the IDC, whereas the presence of functionally related proteins is highly correlated. In contrast, the abundance of most parasite proteins peaks significantly later (median 11 h) than the corresponding transcripts and often decreases slowly in the second half of the IDC. Computational modeling indicates that the considerable and varied incongruence between transcript and protein abundance may largely be caused by the dynamics of translation and protein degradation. Furthermore, we present cyclic abundance profiles also for parasite-associated human proteins and confirm the presence of five human proteins with a potential role in antioxidant defense within the parasites. Together, our data provide fundamental insights into transcript-protein relationships in P. falciparum that are important for the correct interpretation of transcriptional data and that may facilitate the improvement and development of malaria diagnostics and drug therapy.
Collapse
Affiliation(s)
- Bernardo Javier Foth
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | | | | | |
Collapse
|
21
|
Metabolomics and malaria biology. Mol Biochem Parasitol 2010; 175:104-11. [PMID: 20970461 DOI: 10.1016/j.molbiopara.2010.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 12/31/2022]
Abstract
Metabolomics has ushered in a novel and multi-disciplinary realm in biological research. It has provided researchers with a platform to combine powerful biochemical, statistical, computational, and bioinformatics techniques to delve into the mysteries of biology and disease. The application of metabolomics to study malaria parasites represents a major advance in our approach towards gaining a more comprehensive perspective on parasite biology and disease etiology. This review attempts to highlight some of the important aspects of the field of metabolomics, and its ongoing and potential future applications to malaria research.
Collapse
|
22
|
Becker JVW, Mtwisha L, Crampton BG, Stoychev S, van Brummelen AC, Reeksting S, Louw AI, Birkholtz LM, Mancama DT. Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels. BMC Genomics 2010; 11:235. [PMID: 20385001 PMCID: PMC2867828 DOI: 10.1186/1471-2164-11-235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 04/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Plasmodium falciparum, the causative agent of severe human malaria, has evolved to become resistant to previously successful antimalarial chemotherapies, most notably chloroquine and the antifolates. The prevalence of resistant strains has necessitated the discovery and development of new chemical entities with novel modes-of-action. Although much effort has been invested in the creation of analogues based on existing drugs and the screening of chemical and natural compound libraries, a crucial shortcoming in current Plasmodial drug discovery efforts remains the lack of an extensive set of novel, validated drug targets. A requirement of these targets (or the pathways in which they function) is that they prove essential for parasite survival. The polyamine biosynthetic pathway, responsible for the metabolism of highly abundant amines crucial for parasite growth, proliferation and differentiation, is currently under investigation as an antimalarial target. Chemotherapeutic strategies targeting this pathway have been successfully utilized for the treatment of Trypanosomes causing West African sleeping sickness. In order to further evaluate polyamine depletion as possible antimalarial intervention, the consequences of inhibiting P. falciparum spermidine synthase (PfSpdSyn) were examined on a morphological, transcriptomic, proteomic and metabolic level. Results Morphological analysis of P. falciparum 3D7 following application of the PfSpdSyn inhibitor cyclohexylamine confirmed that parasite development was completely arrested at the early trophozoite stage. This is in contrast to untreated parasites which progressed to late trophozoites at comparable time points. Global gene expression analyses confirmed a transcriptional arrest in the parasite. Several of the differentially expressed genes mapped to the polyamine biosynthetic and associated metabolic pathways. Differential expression of corresponding parasite proteins involved in polyamine biosynthesis was also observed. Most notably, uridine phosphorylase, adenosine deaminase, lysine decarboxylase (LDC) and S-adenosylmethionine synthetase were differentially expressed at the transcript and/or protein level. Several genes in associated metabolic pathways (purine metabolism and various methyltransferases) were also affected. The specific nature of the perturbation was additionally reflected by changes in polyamine metabolite levels. Conclusions This study details the malaria parasite's response to PfSpdSyn inhibition on the transcriptomic, proteomic and metabolic levels. The results corroborate and significantly expand previous functional genomics studies relating to polyamine depletion in this parasite. Moreover, they confirm the role of transcriptional regulation in P. falciparum, particularly in this pathway. The findings promote this essential pathway as a target for antimalarial chemotherapeutic intervention strategies.
Collapse
|