1
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Motahhary M, Saghari S, Sharifi L, Bokaie S, Mirzaei S, Entezari M, Aref AR, Salimimoghadam S, Rashidi M, Taheriazam A, Hushmandi K. STAT3 signaling in prostate cancer progression and therapy resistance: An oncogenic pathway with diverse functions. Biomed Pharmacother 2023; 158:114168. [PMID: 36916439 DOI: 10.1016/j.biopha.2022.114168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The categorization of cancers demonstrates that prostate cancer is the most common malignancy in men and it causes high death annually. Prostate cancer patients are diagnosed mainly via biomarkers such as PSA test and patients show poor prognosis. Prostate cancer cells rapidly diffuse into different parts of body and their metastasis is also a reason for death. Current therapies for prostate cancer patients include chemotherapy, surgery and radiotherapy as well as targeted therapy. The progression of prostate cancer cells is regulated by different factors that STAT3 signaling is among them. Growth factors and cytokines such as IL-6 can induce STAT3 signaling and it shows carcinogenic impact. Activation of STAT3 signaling occurs in prostate cancer and it promotes malignant behavior of tumor cells. Induction of STAT3 signaling increases glycolysis and proliferation of prostate cancer cells and prevents apoptosis. Furthermore, STAT3 signaling induces EMT mechanism in increasing cancer metastasis. Activation of STAT3 signaling stimulates drug resistance and the limitation of current works is lack of experiment related to role of STAT3 signaling in radio-resistance in prostate tumor. Calcitriol, capsazepine and β-elemonic are among the compounds capable of targeting STAT3 signaling and its inhibition in prostate cancer therapy. In addition to natural products, small molecules targeting STAT3 signaling have been developed in prostate cancer therapy.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Laleh Sharifi
- Uro-oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6, Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
In Vitro Combination of Ascorbic and Ellagic Acids in Sperm Oxidative Damage Inhibition. Int J Mol Sci 2022; 23:ijms232314751. [PMID: 36499078 PMCID: PMC9740292 DOI: 10.3390/ijms232314751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
It is known that an altered redox balance interferes with normal spermatic functions. Exposure to genotoxic substances capable of producing oxidative stress (OS) can cause infertility in humans. The use of antioxidants to reduce oxidative stress contributes to the improvement in reproductive function. This study focused on an antigenotoxic evaluation of ellagic acid (EA) and ascorbic acid (AA) in combination against benzene genotoxic action on human spermatozoa in vitro. In addition to the evaluation of sperm parameters, damage in sperm genetic material and intracellular ROS quantification were assessed after AA, EA and benzene co-exposure using the TUNEL technique and DCF assay. The results showed that the combination of the two antioxidants generates a greater time-dependent antigenotoxic action, reducing both the sperm DNA fragmentation index and the oxidative stress. The genoprotective effect of AA and EA association in sperm cells lays the foundations for a more in-depth clinical study on the use of antioxidants as a therapy for male infertility.
Collapse
|
3
|
Mottola F, Santonastaso M, Iovine C, Rossetti C, Ronga V, Rocco L. DNA Damage in Human Amniotic Cells: Antigenotoxic Potential of Curcumin and α-Lipoic Acid. Antioxidants (Basel) 2021; 10:antiox10071137. [PMID: 34356370 PMCID: PMC8301061 DOI: 10.3390/antiox10071137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Oxidative imbalances in the gestational phase are responsible for certain complications during pregnancy and for foetal and neonatal genetic disorders. In this work, using human amniocytes, we aimed to evaluate the protection provided to foetal DNA by two concentrations of antioxidant molecules, α-lipoic acid (LA) and curcumin (Cur), against hydrogen peroxide (H2O2)-induced damage. Genotoxicity tests, performed by the random amplification of polymorphic DNA (RAPD-PCR) technique and TUNEL tests, showed that the lowest concentration of LA-protected cells and DNA from H2O2 insults. However, a greater ability to protect the amniocytes’ DNA against H2O2 was observed following co-treatment with the highest concentration of Cur with H2O2. In fact, a genomic template stability (GTS%) similar to that of the negative control and a statistically significant reduction in the DNA fragmentation index (DFI) were revealed. Moreover, following a combined treatment with both antioxidants and H2O2, no statistical difference from controls was observed, in terms of both induced mutations and DNA breaks. Furthermore, no effect on morphology or cell viability was observed. The results demonstrate the ability of LA and Cur to protect the genetic material of amniocytes against genotoxic insults, suggesting their beneficial effects in pathologies related to oxidative stress.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (C.I.)
| | - Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania, Luigi Vanvitelli, 80138 Napoli, Italy;
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (C.I.)
| | - Cristina Rossetti
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, 80055 Napoli, Italy;
| | - Valentina Ronga
- Prenatal Diagnosis Unit, Varelli Diagnostic Institute, 80126 Napoli, Italy;
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (C.I.)
- Correspondence:
| |
Collapse
|
4
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Hussain Y, Luqman S, Meena A. Research Progress in Flavonoids as Potential Anticancer Drug Including Synergy with Other Approaches. Curr Top Med Chem 2021; 20:1791-1809. [PMID: 32357817 DOI: 10.2174/1568026620666200502005411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In chemotherapy for cancer, conventional drugs aim to target the rapidly growing and dividing cells at the early stages. However, at an advanced stage, cancer cells become less susceptible because of the multidrug resistance and the recruitment of alternative salvage pathways for their survival. Besides, owing to target non-selectivity, healthy proliferating cells also become vulnerable to the damage. The combination therapies offered using flavonoids to cure cancer not only exert an additive effect against cancer cells by targetting supplementary cell carnage pathways but also hampers the drug resistance mechanisms. Thus, the review aims to discuss the potential and pharmacokinetic limitations of flavonoids in cancer treatment. Further successful synergistic studies reported using flavonoids to treat cancer has been described along with potential drug delivery systems. METHODS A literature search was done by exploring various online databases like Pubmed, Scopus, and Google Scholar with the specific keywords like "Anticancer drugs", "flavonoids", "oncology research", and "pharmacokinetics". RESULTS Dietary phytochemicals, mainly flavonoids, hinder cell signalling responsible for multidrug resistance and cancer progression, primarily targeting cancer cells sparing normal cells. Such properties establish flavonoids as a potential candidate for synergistic therapy. However, due to low absorption and high metabolism rates, the bioavailability of flavonoids becomes a challenge. Such challenges may be overcome using novel approaches like derivatization, and single or co-delivery nano-complexes of flavonoids with conventional drugs. These new approaches may improve the pharmacokinetic and pharmacodynamic of flavonoids. CONCLUSION This review highlights the application of flavonoids as a potential anticancer phytochemical class in combination with known anti-cancer drugs/nanoparticles. It also discusses flavonoid's pharmacokinetics and pharmacodynamics issues and ways to overcome such issues. Moreover, it covers successful methodologies employed to establish flavonoids as a safe and effective phytochemical class for cancer treatment.
Collapse
Affiliation(s)
- Yusuf Hussain
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Abha Meena
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| |
Collapse
|
6
|
Torricelli P, Elia AC, Magara G, Feriotto G, Forni C, Borromeo I, De Martino A, Tabolacci C, Mischiati C, Beninati S. Reduction of oxidative stress and ornithine decarboxylase expression in a human prostate cancer cell line PC-3 by a combined treatment with α-tocopherol and naringenin. Amino Acids 2021; 53:63-72. [PMID: 33398525 DOI: 10.1007/s00726-020-02925-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023]
Abstract
Differentiation of a human aggressive PC-3 cancer cell line was obtained, in a previous investigation, by the synergic effect of α-tocopherol (α-TOC) and naringenin (NG). This combined treatment induced apoptosis and subsequent reduction of the PC-3 cell proliferation and invasion, by a pro-differentiating action. Since one of the peculiar characteristics of NG and α-TOC is their strong antioxidant activity, this study aimed to investigate their potential effect on the activity of the main enzymes involved in the antioxidant mechanism in prostate cancer cells. NG and α-TOC administered singularly or combined in the PC-3 cell line, affected the activity of several enzymes biomarkers of the cellular antioxidant activity, as well as the concentration of total glutathione (GSH + GSSG) and thiobarbituric acid reactive substances (TBARS). The combined treatment increased the TBARS levels and superoxide dismutase (SOD) activity, while decreased the glutathione S-transferase (GST), glutathione reductase (GR), and glyoxalase I (GI) activities. The results obtained indicate that a combined treatment with these natural compounds mitigated the oxidative stress in the human PC-3 cell line. In addition, a significant reduction of both ornithine decarboxylase (ODC) expression and intracellular levels of polyamines, both well-known positive regulators of cell proliferation, accompanied the reduction of oxidative stress observed in the combined α-TOC and NG treatment. Considering the established role of polyamines in cell differentiation, the synergism with NG makes α-TOC a potential drug for further study on the differentiation therapy in prostate cancer patients.
Collapse
Affiliation(s)
| | - Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Giordana Feriotto
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Cinzia Forni
- Department of Biology, University of Tor Vergata, Rome, Italy
| | - Ilaria Borromeo
- Department of Physics, University of Tor Vergata, Rome, Italy
| | | | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Simone Beninati
- Department of Biology, University of Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Memariani Z, Abbas SQ, Ul Hassan SS, Ahmadi A, Chabra A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol Res 2020; 171:105264. [PMID: 33166734 DOI: 10.1016/j.phrs.2020.105264] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Although the rates of many cancers are controlled in Western countries, those of some cancers, such as lung, breast, and colorectal cancer are currently increasing in many low- and middle-income countries due to increases in risk factors caused by development and societal problems. Additionally, endogenous factors, such as inherited mutations, steroid hormones, insulin, and insulin-like growth factor systems, inflammation, oxidative stress, and exogenous factors (including tobacco, alcohol, infectious agents, and radiation), are believed to compromise cell functions and lead to carcinogenesis. Chemotherapy, surgery, radiation therapy, hormone therapy, and targeted therapies are some examples of the approaches used for cancer treatment. However, various short- and long-term side effects can also considerably impact patient prognosis based on clinical factors associated with treatments. Recently, increasing numbers of studies have been conducted to identify novel therapeutic agents from natural products, among which plant-derived bioactive compounds have been increasingly studied. Naringin (NG) and its aglycone naringenin (NGE) are abundantly present in citrus fruits, such as grapefruits and oranges. Their anti-carcinogenic activities have been shown to be exerted through several cell signal transduction pathways. Recently, different pharmacological strategies based on combination therapy, involving NG and NGE with the current anti-cancer agents have shown prodigious synergistic effects when compared to monotherapy. Besides, NG and NGE have been reported to overcome multidrug resistance, resulting from different defensive mechanisms in cancer, which is one of the major obstacles of clinical treatment. Thus, we comprehensively reviewed the inhibitory effects of NG and NGE on several types of cancers through different signal transduction pathways, the roles on sensitizing with the current anticancer medicines, and the efficacy of the cancer combination therapy.
Collapse
Affiliation(s)
- Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar, Pakistan.
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Aroona Chabra
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
8
|
Gumushan Aktas H, Akgun T. Naringenin inhibits prostate cancer metastasis by blocking voltage-gated sodium channels. Biomed Pharmacother 2018; 106:770-775. [DOI: 10.1016/j.biopha.2018.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/30/2018] [Accepted: 07/01/2018] [Indexed: 12/17/2022] Open
|
9
|
Abstract
Naringenin, a citrus flavonoid that possesses various biological activities, has emerged as a potential therapeutic agent for the management of a variety of diseases. Studies using cell culture system have shown that naringenin can inhibit inflammatory response in diverse cell types. Moreover, research using various animal models has further demonstrated therapeutic potentials of naringenin in the treatment of several inflammation-related disorders, such as sepsis, fulminant hepatitis, fibrosis and cancer. The mechanism of action of naringenin is not completely understood but recent mechanistic studies revealed that naringenin suppresses inflammatory cytokine production through both transcriptional and post-transcriptional mechanisms. Surprisingly, naringenin not only inhibits cytokine mRNA expression but also promotes lysosome-dependent cytokine protein degradation. This unique property of naringenin stands in sharp contrast with some widely-studied natural products such as apigenin and curcumin, which regulate cytokine production essentially at the transcriptional level. Therefore, naringenin may provide modality for the development of novel anti-inflammatory agent. This review article summarizes our recent studies in understanding how naringenin acts in cells and animal models. Particularly, we will discuss the anti-inflammatory activities of naringenin in various disease context and its potential use, as an immunomodulator, in the treatment of inflammatory related disease.
Collapse
|
10
|
Lim W, Park S, Bazer FW, Song G. Naringenin-Induced Apoptotic Cell Death in Prostate Cancer Cells Is Mediated via the PI3K/AKT and MAPK Signaling Pathways. J Cell Biochem 2017; 118:1118-1131. [PMID: 27606834 DOI: 10.1002/jcb.25729] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most common cancer in men and the second most common cause of cancer-related deaths in men. Although, various drugs targeting the androgen receptor are normally used, the patients frequently undergo recurrence of the disease. To overcome these limitations, natural compounds have been researched for evidence that they suppress progression and metastasis of various cancer cells. In the present study, we investigated effects of naringenin, a natural anti-oxidant flavonoid derived from citrus, on prostate cancer cells (PC3 and LNCaP). Results of present study with PC3 and LNCaP cells revealed that naringenin inhibited proliferation and migration, while inducing apoptosis and ROS production by those cells. In addition, naringenin-induced loss of mitochondrial membrane potential and increased Bax and decreased Bcl-2 proteins in PC3 cells, but not LNCaP cells. In a dose-dependent manner, naringenin decreased phosphorylation of ERK1/2, P70S6K, S6, and P38 in PC3 cells, and reduced phosphorylation of ERK1/2, P53, P38, and JNK proteins in LNCaP cells. However, naringenin activated phosphorylation of AKT in both PC3 and LNCaP cells. Then, targeted signaling proteins associated with viability of PC3 and LNCaP cells were analyzed using pharmacological inhibitors of AKT and ERK1/2 cell signaling pathways. Moreover, we compared the apoptotic effects of naringenin and paclitaxel alone and in combination to find that naringenin enhanced the efficiency of paclitaxel to suppress progression of prostate cancer cell lines. Collectively, these results indicate that naringenin is a potential chemotherapeutic agent for treatment of prostate cancer. J. Cell. Biochem. 118: 1118-1131, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biotechnology and Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sunwoo Park
- Department of Biotechnology and Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843-2471, Texas
| | - Gwonhwa Song
- Department of Biotechnology and Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
11
|
Cytotoxic, genotoxic and apoptotic effects of naringenin-oxime relative to naringenin on normal and cancer cell lines. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Mandracchia D, Tripodo G, Trapani A, Ruggieri S, Annese T, Chlapanidas T, Trapani G, Ribatti D. Inulin based micelles loaded with curcumin or celecoxib with effective anti-angiogenic activity. Eur J Pharm Sci 2016; 93:141-6. [DOI: 10.1016/j.ejps.2016.08.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
|
13
|
Chen P, Bai P, Luo G, Su H, Shen R, Liu Z, Zhang N, Fang L, Liu C. Role of Anti-apoptotic Activity of Antioxidants in Conferring Protection Against Prostate Cancer. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.304.316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
γ-Tocopherol inhibits human prostate cancer cell proliferation by up-regulation of transglutaminase 2 and down-regulation of cyclins. Amino Acids 2012; 44:45-51. [PMID: 22460364 DOI: 10.1007/s00726-012-1278-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 03/16/2012] [Indexed: 02/07/2023]
Abstract
To establish a system to study differentiation therapy drugs, we used the androgen-independent human prostate PC-3 tumor cell line as a target and α- and γ-tocopherol as inducers. Effects of α- and γ-tocopherol on the cell cycle, proliferation and differentiation, were examined. A more significant growth inhibition activity for γ- than for α-tocopherol was observed. Flow cytometry analysis of α- and γ-tocopherol-treated prostate carcinoma PC3 cells showed decreased progression into the S-phase. This effect, particularly evident for γ-tocopherol, was associated with an up-regulation and increased activity of transglutaminase 2 (TG2), a reduced DNA synthesis and a remarkable decreased levels of cyclin D1 and cyclin E. Activation of TG2 suggests that γ-tocopherol has an evident differentiative capacity on PC3 cells, leading to an increased expression of TG2, and reduced cyclin D1 and cyclin E levels, affecting cell cycle progression. It is feasible that up-regulation and activation of TG2, associated with a reduced proliferation, are parts of a large-scale reprogramming that can attenuate the malignant phenotype of PC3 cells in vitro. These data suggest further investigation on the potential use of this γ-form of vitamin E as a differentiative agent, in combination with the common cytotoxic treatments for prostate cancer therapy.
Collapse
|
15
|
Ling D, Marshall GM, Liu PY, Xu N, Nelson CA, Iismaa SE, Liu T. Enhancing the anticancer effect of the histone deacetylase inhibitor by activating transglutaminase. Eur J Cancer 2012; 48:3278-87. [PMID: 22459762 DOI: 10.1016/j.ejca.2012.02.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/02/2012] [Accepted: 02/26/2012] [Indexed: 12/12/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have shown promising anticancer effects in clinical trials. However, a proportion of patients do not respond to HDAC inhibitor therapy. We have previously demonstrated that tissue transglutaminase (TG2) is one of the genes commonly up-regulated by HDAC inhibitors in vitro and in vivo, and that two structurally distinct TG2 protein isoforms, the full-length (TG2-L) and the short form (TG2-S), exert opposing effects on cell differentiation due to difference in transamidation activity. Here we show that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) transcriptionally activates the expression of both TG2-L and TG2-S, and that up-regulation of TG2-L renders neuroblastoma cells less sensitive to SAHA-induced cytotoxicity. Combination therapy with SAHA and the transamidation activator Naringenin, a natural product found in citrus fruits, synergistically enhanced transamidation activity and SAHA-induced cytotoxicity in neuroblastoma cells, but not in normal non-malignant cells. In tumour-bearing N-Myc transgenic mice, SAHA and Naringenin synergistically suppressed tumour progression. Taken together, our data demonstrate that SAHA-induced TG2-L over-expression renders cancer cells less sensitive to SAHA therapy, and suggest the addition of Naringenin to SAHA and probably also other HDAC inhibitors in future clinical trials in cancer patients.
Collapse
Affiliation(s)
- Dora Ling
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | |
Collapse
|