1
|
Cresti L, Cappello G, Pini A. Antimicrobial Peptides towards Clinical Application-A Long History to Be Concluded. Int J Mol Sci 2024; 25:4870. [PMID: 38732089 PMCID: PMC11084544 DOI: 10.3390/ijms25094870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.
Collapse
Affiliation(s)
- Laura Cresti
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Giovanni Cappello
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Alessandro Pini
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
- SetLance srl, Via Fiorentina 1, 53100 Siena, Italy
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
| |
Collapse
|
2
|
Jørgensen J, Mood EH, Knap ASH, Nielsen SE, Nielsen PE, Żabicka D, Matias C, Domraceva I, Björkling F, Franzyk H. Polymyxins with Potent Antibacterial Activity against Colistin-Resistant Pathogens: Fine-Tuning Hydrophobicity with Unnatural Amino Acids. J Med Chem 2024; 67:1370-1383. [PMID: 38169430 PMCID: PMC10824244 DOI: 10.1021/acs.jmedchem.3c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
In view of the increased prevalence of antimicrobial resistance among human pathogens, antibiotics against multidrug-resistant (MDR) bacteria are in urgent demand. In particular, the rapidly emerging resistance to last-resort antibiotic colistin, used for severe Gram-negative MDR infections, is critical. Here, a series of polymyxins containing unnatural amino acids were explored, and some analogues exhibited excellent antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Hydrophobicity of the compounds within this series (as measured by retention in reversed-phase analytical HPLC) exhibited a discernible correlation with their antimicrobial activity. This trend was particularly pronounced for colistin-resistant pathogens. The most active compounds demonstrated competitive activity against a panel of Gram-negative pathogens, while exhibiting low in vitro cytotoxicity. Importantly, most of these hits also retained (or even had increased) potency against colistin-susceptible strains. These findings infer that fine-tuning hydrophobicity may enable the design of polymyxin analogues with favorable activity profiles.
Collapse
Affiliation(s)
- Johan
Storm Jørgensen
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Elnaz Harifi Mood
- Center
for Peptide-Based Antibiotics, Department of Cellular and Molecular
Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, The Panum Building, 3C Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Sofie Holst Knap
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Simone Eidnes Nielsen
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Peter E. Nielsen
- Center
for Peptide-Based Antibiotics, Department of Cellular and Molecular
Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, The Panum Building, 3C Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Dorota Żabicka
- Department
of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725 Warsaw, Poland
| | - Carina Matias
- Department
of Bacteria, Parasites & Fungi, Statens
Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Ilona Domraceva
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Fredrik Björkling
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Franzyk
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Cresti L, Conte G, Cappello G, Brunetti J, Falciani C, Bracci L, Quaglia F, Ungaro F, d’Angelo I, Pini A. Inhalable Polymeric Nanoparticles for Pulmonary Delivery of Antimicrobial Peptide SET-M33: Antibacterial Activity and Toxicity In Vitro and In Vivo. Pharmaceutics 2022; 15:pharmaceutics15010003. [PMID: 36678633 PMCID: PMC9863998 DOI: 10.3390/pharmaceutics15010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Development of inhalable formulations for delivering peptides to the conductive airways and shielding their interactions with airway barriers, thus enhancing peptide/bacteria interactions, is an important part of peptide-based drug development for lung applications. Here, we report the construction of a biocompatible nanosystem where the antimicrobial peptide SET-M33 is encapsulated within polymeric nanoparticles of poly(lactide-co-glycolide) (PLGA) conjugated with polyethylene glycol (PEG). This system was conceived for better delivery of the peptide to the lungs by aerosol. The encapsulated peptide showed prolonged antibacterial activity, due to its controlled release, and much lower toxicity than the free molecule. The peptide-based nanosystem killed Pseudomonas aeruginosa in planktonic and sessile forms in a dose-dependent manner, remaining active up to 72 h after application. The encapsulated peptide showed no cytotoxicity when incubated with human bronchial epithelial cells from healthy individuals and from cystic fibrosis patients, unlike the free peptide, which showed an EC50 of about 22 µM. In vivo acute toxicity studies in experimental animals showed that the peptide nanosystem did not cause any appreciable side effects, and confirmed its ability to mitigate the toxic and lethal effects of free SET-M33.
Collapse
Affiliation(s)
- Laura Cresti
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- SetLance srl, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Gemma Conte
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Giovanni Cappello
- SetLance srl, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Luisa Bracci
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | - Ivana d’Angelo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Correspondence: (I.d.); (A.P.)
| | - Alessandro Pini
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
- Correspondence: (I.d.); (A.P.)
| |
Collapse
|
4
|
Antimicrobial peptides for tackling cystic fibrosis related bacterial infections: a review. Microbiol Res 2022; 263:127152. [DOI: 10.1016/j.micres.2022.127152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
5
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
6
|
Falciani C, Zevolini F, Brunetti J, Riolo G, Gracia R, Marradi M, Loinaz I, Ziemann C, Cossío U, Llop J, Bracci L, Pini A. Antimicrobial Peptide-Loaded Nanoparticles as Inhalation Therapy for Pseudomonas aeruginosa Infections. Int J Nanomedicine 2020; 15:1117-1128. [PMID: 32110011 PMCID: PMC7034994 DOI: 10.2147/ijn.s218966] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Antibiotic-resistant bacteria kill 25,000 people every year in the EU. Patients subject to recurrent lung infections are the most vulnerable to severe or even lethal infections. For these patients, pulmonary delivery of antibiotics would be advantageous, since inhalation can achieve higher concentration in the lungs than iv administration and can provide a faster onset of action. This would allow for the delivery of higher doses and hence reduce the number of treatments required. We report here about a new nanosystem (M33-NS) obtained by capturing SET-M33 peptide on single-chain dextran nanoparticles. SET-M33 is a non-natural antimicrobial peptide synthesized in branched form. This form gives the peptide resistance to degradation in biological fluids. SET-M33 has previously shown efficacy in vitro against about one hundred of Gram-negative multidrug and extensively drug-resistant clinical isolates and was also active in preclinical infection models of pneumonia, sepsis and skin infections. METHODS The new nanosystem was evaluated for its efficacy in bacteria cells and in a mouse model of pneumonia. Toxicity and genotoxicity were also tested in vitro. Biodistribution and pharmacokinetic studies in healthy rats were carried out using a radiolabeled derivative of the nanosystem. RESULTS The M33-nanosystem, studied here, showed to be effective against Pseudomonas aeruginosa in time-kill kinetic experiments. Cytotoxicity towards different animal cell lines was acceptable. Lung residence time of the antimicrobial peptide, administered via aerosol in healthy rats, was markedly improved by capturing SET-M33 on dextran nanoparticles. M33-NS was also efficient in eradicating pulmonary infection in a BALB/c mouse model of pneumonia caused by P. aeruginosa. DISCUSSION This study revealed that the encapsulation of the antimicrobial peptide in dextran nanoparticles markedly improved lung residence time of the peptide administered via aerosol. The result has to be considered among the aims of the development of a new therapeutic option for patients suffering recurrent infections, that will benefit from high local doses of persistent antimicrobials.
Collapse
Affiliation(s)
- Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Fabrizia Zevolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Raquel Gracia
- CIDETEC, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Marco Marradi
- CIDETEC, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Iraida Loinaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Centro de Investigación Biomédica en red Enfermedades Respiratorias – CIBERES, Madrid, Spain
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
7
|
NMR Study of the Secondary Structure and Biopharmaceutical Formulation of an Active Branched Antimicrobial Peptide. Molecules 2019; 24:molecules24234290. [PMID: 31775296 PMCID: PMC6930567 DOI: 10.3390/molecules24234290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
The synthetic antimicrobial peptide SET-M33 is being developed as a possible new antibacterial candidate for the treatment of multi-drug resistant bacteria. SET-M33 is a branched peptide featuring higher resistance and bioavailability than its linear analogues. SET-M33 shows antimicrobial activity against different species of multi-resistant Gram-negative bacteria, including clinically isolated strains of Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanii and Escherichia coli. The secondary structure of this 40 amino acid peptide was investigated by NMR to fully characterize the product in the framework of preclinical studies. The possible presence of helixes or β-sheets in the structure had to be explored to predict the behavior of the branched peptide in solution, with a view to designing a formulation for parenteral administration. Since the final formulation of SET-M33 will be strictly defined in terms of counter-ions and additives, we also report the studies on a new salt form, SET-M33 chloride, that retains its activity against Gram-negative bacteria and gains in solubility, with a possible improvement in the pharmacokinetic profile. The opportunity of using a chloride counter-ion is very convenient from a process development point of view and did not increase the toxicity of the antimicrobial drug.
Collapse
|
8
|
Quercini L, Brunetti J, Riolo G, Bindi S, Scali S, Lampronti I, D'Aversa E, Wronski S, Pollini S, Gentile M, Lupetti P, Rossolini GM, Falciani C, Bracci L, Pini A. An antimicrobial molecule mitigates signs of sepsis in vivo and eradicates infections from lung tissue. FASEB J 2019; 34:192-207. [PMID: 31914681 DOI: 10.1096/fj.201901896rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
The peptide sequence KKIRVRLSA was synthesized in a dimeric structure (SET-M33DIM) and evaluated as a candidate drug for infections due to multidrug-resistant (MDR) Gram-negative pathogens. SET-M33DIM showed significant antibacterial activity against MDR strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli (Minimal Inhibitory Concentration [MICs], 1.5-11 µM), and less activity against Pseudomonas aeruginosa (MICs, 11-22 µM). It showed very low toxicity in vitro, ex vivo, and in vivo; in cytotoxicity tests, its EC50 was as much as 22 times better than that of SET-M33, a peptide with the same amino-acid sequence, but synthesized in tetra-branched form (638 vs 28 µM). In in vivo and ex vivo experiments, SET-M33DIM cleared P. aeruginosa infection, significantly reducing signs of sepsis in animals, and restoring cell viability in lung tissue after bacterial challenge. It also quelled inflammation triggered by LPS and live bacterial cells, inhibiting expression of inflammatory mediators in lung tissue, cultured macrophages, and bronchial cells from a cystic fibrosis patient.
Collapse
Affiliation(s)
| | - Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Giulia Riolo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Stefano Bindi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Silvia Scali
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer international Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | | | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
9
|
Formulation Composition and Process Affect Counterion for CSP7 Peptide. Pharmaceutics 2019; 11:pharmaceutics11100498. [PMID: 31569515 PMCID: PMC6835953 DOI: 10.3390/pharmaceutics11100498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022] Open
Abstract
Counterions commonly remain with peptides in salt form after peptide purification. In animal and human studies, acetate counterions are a safer and more acceptable choice for peptides than others (e.g., trifluoroacetate counterions). Various salt forms of caveolin-1 scaffolding domain (CSP7) affect counterion volatilization. The development of lyophilized formulations containing volatile compounds is a challenge because these compounds sublimate away during the process. This work aims to investigate the effect of excipients and lyophilization parameters on the preservation of volatile compounds after lyophilization. The peak areas obtained from 1H and 19F NMR spectra were used to calculate the molar ratio of counterions to CSP7. We found that the pH modifier excipient had the greatest impact on the loss of counterions. By optimizing the molar ratio of bulking agent to CSP7, volatile compounds can be preserved after lyophilization. Higher chamber pressure during lyophilization can lower the sublimation rate of volatile compounds. Moreover, the loss of volatile compounds affects the stability of CSP7 due to the pH shift of reconstituted solutions, thereby causing peptide aggregation. The optimization of the formulation and processing helps preserve volatile compounds, thus minimizing the pH change of reconstituted solutions and maintaining the stability of peptide.
Collapse
|
10
|
Gaglione R, Pane K, Dell’Olmo E, Cafaro V, Pizzo E, Olivieri G, Notomista E, Arciello A. Cost-effective production of recombinant peptides in Escherichia coli. N Biotechnol 2019; 51:39-48. [DOI: 10.1016/j.nbt.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 01/08/2023]
|
11
|
van der Weide H, Vermeulen-de Jongh DMC, van der Meijden A, Boers SA, Kreft D, Ten Kate MT, Falciani C, Pini A, Strandh M, Bakker-Woudenberg IAJM, Hays JP, Goessens WHF. Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles. Int J Antimicrob Agents 2019; 54:159-166. [PMID: 31173867 DOI: 10.1016/j.ijantimicag.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/26/2019] [Indexed: 02/01/2023]
Abstract
Colistin is an antimicrobial peptide (AMP) used as a drug of last resort, although plasmid-mediated colistin resistance (MCR) has been reported. AA139 and SET-M33 are novel AMPs currently in development for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. As many AMPs have a similar mode of action to colistin, potentially leading to cross-resistance, the antimicrobial activity of AA139 and SET-M33 was investigated against a collection of 50 clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles, including colistin-resistant strains. The collection was genotypically characterised and susceptibility to clinically relevant antibiotics was determined. Susceptibility to AA139 and SET-M33 did not differ among the collection despite differences in underlying mechanisms of resistance or susceptibility to colistin. For three colistin-susceptible and three colistin-resistant strains with distinct MDR profiles as well as an additional MCR-producing strain, the bactericidal activity of AA139, SET-M33 and colistin during 24 h of exposure was examined. Following 24 h of exposure to AA139, SET-M33 or colistin, the seven strains were tested for changes in susceptibility to the respective AMPs. AA139 and SET-M33 showed a concentration-dependent bactericidal effect irrespective of bacterial susceptibility to colistin. Exposure to low colistin concentrations resulted in the development of colistin resistance in colistin-susceptible strains, whereas susceptibility to AA139 and SET-M33 following exposure to the respective AMPs was maintained. The two novel AMPs remained effective against colistin-resistant strains and may be promising novel drugs for the treatment of clinically and genotypically diverse MDR K. pneumoniae infections, including infections associated with colistin-resistant bacteria.
Collapse
Affiliation(s)
- Hessel van der Weide
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Denise M C Vermeulen-de Jongh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Aart van der Meijden
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stefan A Boers
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deborah Kreft
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marian T Ten Kate
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Siena, Italy; Setlance srl, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnology, University of Siena, Siena, Italy; Setlance srl, Siena, Italy
| | | | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - John P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Wil H F Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Retro analog concept: comparative study on physico-chemical and biological properties of selected antimicrobial peptides. Amino Acids 2017; 49:1755-1771. [PMID: 28756544 PMCID: PMC5602100 DOI: 10.1007/s00726-017-2473-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/20/2017] [Indexed: 01/03/2023]
Abstract
Increasing drug resistance of common pathogens urgently needs discovery of new effective molecules. Antimicrobial peptides are believed to be one of the possible solutions of this problem. One of the approaches for improvement of biological properties is reversion of the sequence (retro analog concept). This research is based on investigation of antimicrobial activity against Gram-positive, Gram-negative bacteria, and fungi, hemolysis of erythrocytes, interpretation of the circular dichroism spectra, measurement of counter-ion content, and assessment of the peptide hydrophobicity and self-assembly using reversed-phase chromatography. The experiments were conducted using the following peptides: aurein 1.2, CAMEL, citropin 1.1, omiganan, pexiganan, temporin A, and their retro analogs. Among the compounds studied, only retro omiganan showed an enhanced antimicrobial and a slightly increased hemolytic activity as compared to parent molecule. Moreover, retro pexiganan exhibited high activity towards Klebsiella pneumoniae, whereas pexiganan was in general more or equally active against the rest of tested microorganisms. Furthermore, the determined activity was closely related to the peptide hydrophobicity. In general, the reduced hemolytic activity correlates with lower antimicrobial activity. The tendency to self-association and helicity fraction in SDS seems to be correlated. The normalized RP-HPLC—temperature profiles of citropin 1.1 and aurein 1.2, revealed an enhanced tendency to self-association than that of their retro analogs.
Collapse
|
13
|
Citropin 1.1 Trifluoroacetate to Chloride Counter-Ion Exchange in HCl-Saturated Organic Solutions: An Alternative Approach. Int J Pept Res Ther 2017; 24:265-270. [PMID: 29720924 PMCID: PMC5918489 DOI: 10.1007/s10989-017-9611-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2017] [Indexed: 11/13/2022]
Abstract
In view of the increasing interest in peptides in various market sectors, a stronger emphasis on topics related to their production has been seen. Fmoc-based solid phase peptide synthesis, although being fast and efficient, provides final products with significant amounts of trifluoroacetate ions in the form of either a counter-ion or an unbound impurity. Because of the proven toxicity towards cells and peptide activity inhibition, ion exchange to more biocompatible one is purposeful. Additionally, as most of the currently used counter-ion exchange techniques are time-consuming and burdened by peptide yield reduction risk, development of a new approach is still a sensible solution. In this study, we examined the potential of peptide counter-ion exchange using non-aqueous organic solvents saturated with HCl. Counter-ion exchange of a model peptide, citropin 1.1 (GLFDVIKKVASVIGGL-NH2), for each solvent was conducted through incubation with subsequent evaporation under reduced pressure, dissolution in water and lyophilization. Each exchange was performed four times and compared to a reference method—lyophilization of the peptide from an 0.1 M HCl solution. The results showed superior counter-ion exchange efficiency for most of the organic solutions in relation to the reference method. Moreover, HCl-saturated acetonitrile and tert-butanol provided a satisfying exchange level after just one repetition. Thus, those two organic solvents can be potentially introduced into routine peptide counter-ion exchange.
Collapse
|
14
|
van der Weide H, Brunetti J, Pini A, Bracci L, Ambrosini C, Lupetti P, Paccagnini E, Gentile M, Bernini A, Niccolai N, Jongh DVD, Bakker-Woudenberg IAJM, Goessens WHF, Hays JP, Falciani C. Investigations into the killing activity of an antimicrobial peptide active against extensively antibiotic-resistant K. pneumon iae and P. aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1796-1804. [PMID: 28583831 DOI: 10.1016/j.bbamem.2017.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
SET-M33 is a multimeric antimicrobial peptide active against Gram-negative bacteria in vitro and in vivo. Insights into its killing mechanism could elucidate correlations with selectivity. SET-M33 showed concentration-dependent bactericidal activity against colistin-susceptible and resistant isolates of P. aeruginosa and K. pneumoniae. Scanning and transmission microscopy studies showed that SET-M33 generated cell blisters, blebs, membrane stacks and deep craters in K. pneumoniae and P. aeruginosa cells. NMR analysis and CD spectra in the presence of sodium dodecyl sulfate micelles showed a transition from an unstructured state to a stable α-helix, driving the peptide to arrange itself on the surface of micelles. SET-M33 kills Gram-negative bacteria after an initial interaction with bacterial LPS. The molecule becomes then embedded in the outer membrane surface, thereby impairing cell function. This activity of SET-M33, in contrast to other similar antimicrobial peptides such as colistin, does not generate resistant mutants after 24h of exposure, non-specific interactions or toxicity against eukaryotic cell membranes, suggesting that SET-M33 is a promising new option for the treatment of Gram-negative antibiotic-resistant infections.
Collapse
Affiliation(s)
- Hessel van der Weide
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnology, University of Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnology, University of Siena, Italy
| | | | | | | | | | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Neri Niccolai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Denise Vermeulen-de Jongh
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wil H F Goessens
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John P Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Italy; Setlance srl, Research and Development Department, Siena, Italy.
| |
Collapse
|
15
|
Row RD, Shih HW, Alexander AT, Mehl RA, Prescher JA. Cyclopropenones for Metabolic Targeting and Sequential Bioorthogonal Labeling. J Am Chem Soc 2017; 139:7370-7375. [DOI: 10.1021/jacs.7b03010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Austin T. Alexander
- Department
of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ryan A. Mehl
- Department
of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | | |
Collapse
|
16
|
Pollini S, Brunetti J, Sennati S, Rossolini GM, Bracci L, Pini A, Falciani C. Synergistic activity profile of an antimicrobial peptide against multidrug-resistant and extensively drug-resistant strains of Gram-negative bacterial pathogens. J Pept Sci 2017; 23:329-333. [PMID: 28176481 DOI: 10.1002/psc.2978] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/22/2022]
Abstract
Infection sustained by multidrug-resistant and extensively drug-resistant bacterial pathogens is often untreatable with the standard of care antibiotics, and the combination of anti-infective compounds often represents the only therapeutic strategy to face this major clinical treat. SET-M33 is a novel antimicrobial peptide (AMP) that has demonstrated in vitro and in vivo antimicrobial activity against Gram-negative bacteria and has shown interesting features in preclinical evaluations. Particularly, it showed efficacy against a number of multidrug-resistant and extensively drug-resistant clinical strains of Gram-negative pathogens, in in vitro and in vivo assessments. Here, we explored the potential synergistic activity of SET-M33 in combination with different standard of care antibiotics by the checkerboard method against a panel of six strains of Gram-negative pathogens including multidrug-resistant and extensively drug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. SET-M33 showed synergistic activity with antibiotics of different families against these clinically relevant strains. A synergistic effect was observed for SET-M33 in combination with rifampin, meropenem, aztreonam, and tobramycin mostly on K. pneumoniae and A. baumannii strains, while the SET-M33 plus ciprofloxacin combination was additive with all tested strains. Synergy was not apparently linked to the bacterial species or phenotype but was rather strain-specific, highlighting the need for individual strain testing for synergistic antimicrobial combinations. These findings extend current knowledge on synergistic activity of AMPs in combination with conventional agents and support the potential role of SET-M33 as a novel therapeutic agent against antibiotic-resistant Gram-negative pathogens. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Simona Pollini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Samanta Sennati
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy.,Don Carlo Gnocchi Foundation, Florence, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Setlance srl, Siena, Italy
| |
Collapse
|
17
|
Savard M, Côté J, Tremblay L, Neugebauer W, Regoli D, Gariépy S, Hébert N, Gobeil F. Safety and pharmacokinetics of a kinin B1 receptor peptide agonist produced with different counter-ions. Biol Chem 2016; 397:365-72. [PMID: 26565554 DOI: 10.1515/hsz-2015-0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/07/2015] [Indexed: 11/15/2022]
Abstract
Several studies have shown the potential therapeutic utility of kinin B1 receptor (B1R) peptide agonists in neurological and ischemic cardiovascular diseases and brain cancer. Preclinical safety studies are a prerequisite for further drug development. The objectives of this study were to determine the acute toxicity and pharmacokinetics of the peptide B1R agonist, SarLys[dPhe8]desArg9-bradykinin (NG29), as trifluoroacetate (TFacetate) or acetate salt form, following intravenous injection in rats. A maximum tolerated dose (MTD) of NG29-TFacetate was established at 75 mg/kg from the results of a dose range-finding study (up to 200 mg/kg). The short-term (4-day) repeat-dose toxicity study of NG29, using its MTD value, showed that NG29-acetate exhibited minimal non-adverse clinical pathology changes in hematology, coagulation, clinical chemistry and urine parameters and severe kidney histopathological changes characterized by renal tubular degeneration. No such effects were observed with NG29-TFacetate. At the injection site, NG29-TFacetate was considered to be more locally irritating when compared to the acetate form. The extent of exposure and half-life values of NG29-TFacetate were comparable to the acetate form (AUC0-α of 10.2 mg/l*h vs. 9.9 mg/l*h; T1/2 of 2.3 h vs. 2.4 h). This study shows that in rats NG29-TFacetate exhibits a superior tolerability profile compared with the peptide acetate form.
Collapse
|
18
|
Brunetti J, Roscia G, Lampronti I, Gambari R, Quercini L, Falciani C, Bracci L, Pini A. Immunomodulatory and Anti-inflammatory Activity in Vitro and in Vivo of a Novel Antimicrobial Candidate. J Biol Chem 2016; 291:25742-25748. [PMID: 27758868 PMCID: PMC5207269 DOI: 10.1074/jbc.m116.750257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Indexed: 01/24/2023] Open
Abstract
The synthetic antimicrobial peptide SET-M33 has strong activity against bacterial infections caused by Gram-negative bacteria. It is currently in preclinical development as a new drug to treat lung infections caused by Gram-negative bacteria. Here we report its strong anti-inflammatory activity in terms of reduced expression of a number of cytokines, enzymes, and signal transduction factors involved in inflammation triggered by LPS from Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Sixteen cytokines and other major agents involved in inflammation were analyzed in macrophages and bronchial cells after stimulation with LPS and incubation with SET-M33. The bronchial cells were obtained from a cystic fibrosis patient. A number of these proteins showed up to 100% reduction in expression as measured by RT-PCR, Western blotting, or Luminex technology. LPS neutralization was also demonstrated in vivo by challenging bronchoalveolar lavage of SET-M33-treated mice with LPS, which led to a sharp reduction in TNF-α with respect to non-SET-M33-treated animals. We also describe a strong activity of SET-M33 in stimulating cell migration of keratinocytes in wound healing experiments in vitro, demonstrating a powerful immunomodulatory action generally characteristic of molecules taking part in innate immunity.
Collapse
Affiliation(s)
- Jlenia Brunetti
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Roscia
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Ilaria Lampronti
- the Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy, and
| | - Roberto Gambari
- the Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy, and
| | - Leila Quercini
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | | | - Luisa Bracci
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Pini
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy,
| |
Collapse
|
19
|
Brunetti J, Falciani C, Roscia G, Pollini S, Bindi S, Scali S, Arrieta UC, Gómez-Vallejo V, Quercini L, Ibba E, Prato M, Rossolini GM, Llop J, Bracci L, Pini A. In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Sci Rep 2016; 6:26077. [PMID: 27169671 PMCID: PMC4864329 DOI: 10.1038/srep26077] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/25/2016] [Indexed: 11/24/2022] Open
Abstract
A synthetic antimicrobial peptide was identified as a possible candidate for the development of a new antibacterial drug. The peptide, SET-M33L, showed a MIC90 below 1.5 μM and 3 μM for Pseudomonas aeruginosa and Klebsiella pneumoniae, respectively. In in vivo models of P. aeruginosa infections, the peptide and its pegylated form (SET-M33L-PEG) enabled a survival percentage of 60–80% in sepsis and lung infections when injected twice i.v. at 5 mg/Kg, and completely healed skin infections when administered topically. Plasma clearance showed different kinetics for SET-M33L and SET-M33L-PEG, the latter having greater persistence two hours after injection. Bio-distribution in organs did not show significant differences in uptake of the two peptides. Unlike colistin, SET-M33L did not select resistant mutants in bacterial cultures and also proved non genotoxic and to have much lower in vivo toxicity than antimicrobial peptides already used in clinical practice. The characterizations reported here are part of a preclinical development plan that should bring the molecule to clinical trial in the next few years.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Giulia Roscia
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Simona Pollini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Stefano Bindi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Clinical Pathology Laboratory, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, viale Bracci, Siena, Italy
| | - Silvia Scali
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Unai Cossio Arrieta
- Radiochemistry and Nuclear Imaging Group CIC biomaGUNE, San Sebastián, Spain
| | | | - Leila Quercini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Ibba
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Prato
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Gian Maria Rossolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy.,Don Carlo Gnocchi Foundation I.R.C.C.S., Florence, Italy
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group CIC biomaGUNE, San Sebastián, Spain
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Clinical Pathology Laboratory, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, viale Bracci, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Clinical Pathology Laboratory, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, viale Bracci, Siena, Italy
| |
Collapse
|
20
|
Yoshiya T, Maruno T, Uemura T, Kubo S, Kiso Y, Sohma Y, Yoshizawa-Kumagaye K, Kobayashi Y, Nishiuchi Y. Non-pretreated O-acyl isopeptide of amyloid β peptide 1-42 is monomeric with a random coil structure but starts to aggregate in a concentration-dependent manner. Bioorg Med Chem Lett 2014; 24:3861-4. [PMID: 25017031 DOI: 10.1016/j.bmcl.2014.06.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/25/2022]
Abstract
An isopeptide of amyloid β peptide 1-42 (isoAβ42) was considered as a non-aggregative precursor molecule for the highly aggregative Aβ42. It has been applied to biological studies after several pretreatments. Here we report that isoAβ42 is monomeric with a random coil structure at 40 μM without any pretreatment. But we also found that isoAβ42 retains a slight aggregative nature, which is significantly weaker than that of the native Aβ42.
Collapse
Affiliation(s)
- Taku Yoshiya
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan.
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Tsuyoshi Uemura
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan
| | - Shigeru Kubo
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan
| | - Yoshiaki Kiso
- Laboratory of Peptide Science, Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| | - Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Yuji Nishiuchi
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan; Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
21
|
Falciani C, Lozzi L, Scali S, Brunetti J, Bracci L, Pini A. Site-specific pegylation of an antimicrobial peptide increases resistance to Pseudomonas aeruginosa elastase. Amino Acids 2014; 46:1403-7. [PMID: 24510250 DOI: 10.1007/s00726-014-1686-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/24/2014] [Indexed: 12/19/2022]
Abstract
M33 is a branched peptide currently under preclinical characterization for the development of a new antibacterial drug against gram-negative bacteria. Here, we report its pegylation at the C-terminus of the three-lysine-branching core and the resulting increase in stability to Pseudomonas aeruginosa elastase. This protease is a virulence factor that acts by destroying peptides of the native immune system. Peptide resistance to this protease is an important feature for M33-Peg activity against Pseudomonas.
Collapse
Affiliation(s)
- Chiara Falciani
- Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Cândida albicans cells. Amino Acids 2013; 44:1521-8. [DOI: 10.1007/s00726-013-1475-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
|
23
|
Falciani C, Lozzi L, Pollini S, Luca V, Carnicelli V, Brunetti J, Lelli B, Bindi S, Scali S, Di Giulio A, Rossolini GM, Mangoni ML, Bracci L, Pini A. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS One 2012; 7:e46259. [PMID: 23056272 PMCID: PMC3462775 DOI: 10.1371/journal.pone.0046259] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/31/2012] [Indexed: 01/21/2023] Open
Abstract
The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33 peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively. M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against bacterial pathogens of clinical importance.
Collapse
Affiliation(s)
- Chiara Falciani
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Luisa Lozzi
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Simona Pollini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Vincenzo Luca
- Dipartimento di Scienze Biochimiche A. Fanelli, Università di Roma, La Sapienza, Roma, Italy
| | - Veronica Carnicelli
- Dipartimento di Scienze e Tecnologie Biomediche, Università di L’Aquila, L’Aquila, Italy
| | | | - Barbara Lelli
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Stefano Bindi
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Silvia Scali
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Antonio Di Giulio
- Dipartimento di Scienze e Tecnologie Biomediche, Università di L’Aquila, L’Aquila, Italy
| | - Gian Maria Rossolini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Maria Luisa Mangoni
- Dipartimento di Scienze Biochimiche A. Fanelli, Università di Roma, La Sapienza, Roma, Italy
| | - Luisa Bracci
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Alessandro Pini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
- * E-mail:
| |
Collapse
|