1
|
El Battioui K, Chakraborty S, Wacha A, Molnár D, Quemé-Peña M, Szigyártó IC, Szabó CL, Bodor A, Horváti K, Gyulai G, Bősze S, Mihály J, Jezsó B, Románszki L, Tóth J, Varga Z, Mándity I, Juhász T, Beke-Somfai T. In situ captured antibacterial action of membrane-incising peptide lamellae. Nat Commun 2024; 15:3424. [PMID: 38654023 PMCID: PMC11039730 DOI: 10.1038/s41467-024-47708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral β3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.
Collapse
Grants
- CZ.02.1.01/0.0/0.0/18_046/0015974 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
- This work was funded by the Momentum Program (LP2016-2 and LP2021-28) of the Hungarian Academy of Sciences, the National Competitiveness and Excellence Program (NVKP_16-1-2016-0007), the BIONANO_GINOP-2.3.2-15-2016-00017 project, and the National Research, Development and Innovation Office, Hungary (TKP2021-EGA-31, 2020-1.1.2-PIACI-KFI-2020-00021, 2019-2.1.11-TÉT-2019-00091, KKP_22 Project n.o. 144180, K131594 for J.M., K124900, K137940 for A.B., K142904 for Sz.B., and K138318 to J.T.). Support from Eötvös Loránd Research Network, Grant Nos. SA-87/2021 and KEP-5/2021, are also acknowledged. A.W. and Z.V. were supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The authors acknowledge support from ELTE Thematic Excellence Programme 2020, the Szint+ Program, National Challenges Subprogramme-TKP2020-NKA-06. CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium, funded by MEYS CR infrastructure project LM2018127, LM2023042 and European Regional Development Fund-Project „UP CIISB“ (No. CZ.02.1.01/0.0/0.0/18_046/0015974), is gratefully acknowledged for the financial support of the measurements at the CF Cryo-Electron Microscopy and Tomography.
Collapse
Affiliation(s)
- Kamal El Battioui
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Sohini Chakraborty
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - András Wacha
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Dániel Molnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Mayra Quemé-Peña
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Csenge Lilla Szabó
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
- ELTE Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory, Budapest, H-1117, Hungary
| | - Andrea Bodor
- ELTE Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory, Budapest, H-1117, Hungary
| | - Kata Horváti
- MTA-HUN-REN TTK "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Gergő Gyulai
- MTA-HUN-REN TTK "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- ELTE Eötvös Loránd University, Institute of Chemistry, Laboratory of Interfaces and Nanostructures, Budapest, H-1117, Hungary
| | - Szilvia Bősze
- HUN-REN ELTE Research Group of Peptide Chemistry, Hungarian Research Network, Eötvös Loránd University, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Bálint Jezsó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Loránd Románszki
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Judit Tóth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, H-1111, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary
| | - István Mándity
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, H-1092, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
| |
Collapse
|
3
|
Németh LJ, Hegedüs Z, Martinek TA. Predicting Order and Disorder for β-Peptide Foldamers in Water. J Chem Inf Model 2014; 54:2776-83. [DOI: 10.1021/ci5003476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lukács J. Németh
- SZTE-MTA
Lendulet Foldamer Research Group, Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 6, H-6720 Szeged, Hungary
| | - Zsófia Hegedüs
- SZTE-MTA
Lendulet Foldamer Research Group, Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 6, H-6720 Szeged, Hungary
| | - Tamás A. Martinek
- SZTE-MTA
Lendulet Foldamer Research Group, Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 6, H-6720 Szeged, Hungary
- Institute
of Pharmaceutical Chemistry, University of Szeged, Eötvös
u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Mosca S, Dannehl C, Möginger U, Brezesinski G, Hartmann L. β(3R3)-Peptides: design and synthesis of novel peptidomimetics and their self-assembling properties at the air-water interface. Org Biomol Chem 2014; 11:5399-403. [PMID: 23860843 DOI: 10.1039/c3ob41135d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study we present the design and synthesis of a novel class of peptidomimetics, the β(3R3)-peptides. Via alternating directions of the amide bonds along β-peptide sequences, β(3R3)-peptides can potentially extend the structural space available to β-peptidic foldamers. Detailed analysis at the air-water interface shows strand conformations and the formation of sheet assemblies with different degrees of crystallinity. Furthermore β(3R3)-peptides exhibit a high proteolytic stability thus making them an interesting new class of peptidomimetics for biomedical applications.
Collapse
Affiliation(s)
- Simone Mosca
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | | | | | | | | |
Collapse
|
5
|
Jastrzabek K, Bednarek P, Kolesinska B, Kaminski ZJ. Bis(4,6-dimethoxy-1,3,5-triazin-2-yl) ether as coupling reagent for peptide synthesis. Chem Biodivers 2013; 10:952-61. [PMID: 23681736 DOI: 10.1002/cbdv.201200369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 02/01/2023]
Abstract
Bis(4,6-dimethoxy-1,3,5-triazin-2-yl) ether (4) was prepared by treatment of 2-hydroxy-4,6-dimethoxy-1,3,5-triazine with 2-chloro-4,6-dimethoxy-1,3,5-triazine in 61% yield. Ether 4, isoelectronic with pyrocarbonates, was found capable to activate carboxylic acids in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) to yield, under mild reaction conditions, superactive triazine esters. Versatility of this new coupling reagent was confirmed by condensation of lipophilic and sterically hindered carboxylic acids with amines in 71-98% yield, and by synthesis of peptides, including those containing Aib-Aib sequence, in solution with high yield and high enantiomeric purity.
Collapse
Affiliation(s)
- Konrad Jastrzabek
- Institute of Organic Chemistry, Technical University of Lodz, Zeromskiego 116, PL-90-924 Lodz
| | | | | | | |
Collapse
|