1
|
Bagues A, López-Tofiño Y, Llorente-Berzal Á, Abalo R. Cannabinoid drugs against chemotherapy-induced adverse effects: focus on nausea/vomiting, peripheral neuropathy and chemofog in animal models. Behav Pharmacol 2022; 33:105-129. [PMID: 35045012 DOI: 10.1097/fbp.0000000000000667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although new drugs are being developed for cancer treatment, classical chemotherapeutic agents are still front-line therapies, despite their frequent association with severe side effects that can hamper their use. Cannabinoids may prevent or palliate some of these side effects. The aim of the present study is to review the basic research which has been conducted evaluating the effects of cannabinoid drugs in the treatment of three important side effects induced by classical chemotherapeutic agents: nausea and vomiting, neuropathic pain and cognitive impairment. Several published studies have demonstrated that cannabinoids are useful in preventing and reducing the nausea, vomits and neuropathy induced by different chemotherapy regimens, though other side effects can occur, such as a reduction of gastrointestinal motility, along with psychotropic effects when using centrally-acting cannabinoids. Thus, peripherally-acting cannabinoids and new pharmacological options are being investigated, such as allosteric or biased agonists. Additionally, due to the increase in the survival of cancer patients, there are emerging data that demonstrate an important cognitive deterioration due to chemotherapy, and because the cannabinoid drugs have a neuroprotective effect, they could be useful in preventing chemotherapy-induced cognitive impairment (as demonstrated through studies in other neurological disorders), but this has not yet been tested. Thus, although cannabinoids seem a promising therapeutic approach in the treatment of different side effects induced by chemotherapeutic agents, future research will be necessary to find pharmacological options with a safer profile. Moreover, a new line of research awaits to be opened to elucidate their possible usefulness in preventing cognitive impairment.
Collapse
Affiliation(s)
- Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC)
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Yolanda López-Tofiño
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland, Galway, Ireland
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
- Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
2
|
Boullon L, Abalo R, Llorente-Berzal Á. Cannabinoid Drugs-Related Neuroprotection as a Potential Therapeutic Tool Against Chemotherapy-Induced Cognitive Impairment. Front Pharmacol 2021; 12:734613. [PMID: 34867342 PMCID: PMC8632779 DOI: 10.3389/fphar.2021.734613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023] Open
Abstract
In recent years, and particularly associated with the increase of cancer patients’ life expectancy, the occurrence of cancer treatment sequelae, including cognitive impairments, has received considerable attention. Chemotherapy-induced cognitive impairments (CICI) can be observed not only during pharmacological treatment of the disease but also long after cessation of this therapy. The lack of effective tools for its diagnosis together with the limited treatments currently available for alleviation of the side-effects induced by chemotherapeutic agents, demonstrates the need of a better understanding of the mechanisms underlying the pathology. This review focuses on the comprehensive appraisal of two main processes associated with the development of CICI: neuroinflammation and oxidative stress, and proposes the endogenous cannabinoid system (ECS) as a new therapeutic target against CICI. The neuroprotective role of the ECS, well described in other cognitive-related neuropathologies, seems to be able to reduce the activation of pro-inflammatory cytokines involved in the neuroinflammatory supraspinal processes underlying CICI. This review also provides evidence supporting the role of cannabinoid-based drugs in the modulation of oxidative stress processes that underpin cognitive impairments, and warrant the investigation of endocannabinoid components, still unknown, that may mediate the molecular mechanism behind this neuroprotective activity. Finally, this review points forward the urgent need of research focused on the understanding of CICI and the investigation of new therapeutic targets.
Collapse
Affiliation(s)
- Laura Boullon
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de La Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain
- Unidad Asociada I+D+i Del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Madrid, Spain
- Working Group of Basic Sciences in Pain and Analgesia of the Spanish Pain Society (Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de La Sociedad Española Del Dolor), Madrid, Spain
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
- *Correspondence: Álvaro Llorente-Berzal,
| |
Collapse
|
3
|
Sharma DS, Paddibhatla I, Raghuwanshi S, Malleswarapu M, Sangeeth A, Kovuru N, Dahariya S, Gautam DK, Pallepati A, Gutti RK. Endocannabinoid system: Role in blood cell development, neuroimmune interactions and associated disorders. J Neuroimmunol 2021; 353:577501. [PMID: 33571815 DOI: 10.1016/j.jneuroim.2021.577501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/03/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The endocannabinoid system (ECS) is a complex physiological network involved in creating homeostasis and maintaining human health. Studies of the last 40 years have shown that endocannabinoids (ECs), a group of bioactive lipids, together with their set of receptors, function as one of the most important physiologic systems in human body. ECs and cannabinoid receptors (CBRs) are found throughout the body: in the brain tissues, immune cells, and in the peripheral organs and tissues as well. In recent years, ECs have emerged as key modulators of affect, neurotransmitter release, immune function, and several other physiological functions. This modulatory homoeostatic system operates in the regulation of brain activity and states of physical health and disease. In several research studies and patents the ECS has been recognised with neuro-protective properties thus it might be a target in neurodegenerative diseases. Most immune cells express these bioactive lipids and their receptors, recent data also highlight the immunomodulatory effects of endocannabinoids. Interplay of immune and nervous system has been recognized in past, recent studies suggest that ECS function as a bridge between neuronal and immune system. In several ongoing clinical trial studies, the ECS has also been placed in the anti-cancer drugs spotlight. This review summarizes the literature of cannabinoid ligands and their biosynthesis, cannabinoid receptors and their distribution, and the signaling pathways initiated by the binding of cannabinoid ligands to cannabinoid receptors. Further, this review highlights the functional role of cannabinoids and ECS in blood cell development, neuroimmune interactions and associated disorders. Moreover, we highlight the current state of knowledge of cannabinoid ligands as the mediators of neuroimmune interactions, which can be therapeutically effective for neuro-immune disorders and several diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Durga Shankar Sharma
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Indira Paddibhatla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Sanjeev Raghuwanshi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Mahesh Malleswarapu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Anjali Sangeeth
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Narasaiah Kovuru
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Swati Dahariya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Dushyant Kumar Gautam
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Aditya Pallepati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India.
| |
Collapse
|
4
|
Zhang W, Liu H, Deng XD, Ma Y, Liu Y. FAAH levels and its genetic polymorphism association with susceptibility to methamphetamine dependence. Ann Hum Genet 2019; 84:259-270. [PMID: 31789429 DOI: 10.1111/ahg.12368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022]
Abstract
The fatty acid amide hydrolase (FAAH) gene was involved in the modulation of reward and addiction pathophysiology of illicit drugs abuse, and its polymorphisms might be associated with risk of methamphetamine (METH) dependence. This study aimed to investigate the FAAH mRNA levels in peripheral blood mononuclear cells and plasma protein levels and to analyze the 385C/A polymorphism (rs324420) between METH-dependent patients and controls. The levels of FAAH mRNA in METH dependence were significantly lower than in controls (P < 0.001), however, its plasma protein underwent a significant ∼2-fold increase (P < 0.001). The A allele of the 385C/A polymorphism significantly increased the METH dependence risk (P < 0.001, odds ratio [OR] = 1.646, 95% confidence interval [CI] = 1.332-2.034). The carried A genotypes (AA, AC, and AA/AC) of 385C/A polymorphism also increased METH-dependence risks under a different genetic model (AA vs. CC: P = 0.017, OR = 2.454, 95%CI = 1.171-2.143; AC vs. CC: P < 0.001, OR = 1.818, 95%CI = 1.404-2.353; AC/AA vs. CC: P < 0.001, OR = 1.858, 95%CI = 1.444-2.319). The similar results were obtained after adjusting for age and sex. Unfortunately, we failed to find that any genotype of 385C/A polymorphism affected the mRNA or plasma protein levels in controls, respectively (P > 0.05). These data indicate that the FAAH may play an important role in the pathophysiological process of METH dependence, and the 385C/A polymorphism may be associated with METH dependence susceptibility in a Chinese Han population.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Huan Liu
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.,Department of Preventive Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiao-Dong Deng
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ying Ma
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yun Liu
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
5
|
Abramo F, Lazzarini G, Pirone A, Lenzi C, Albertini S, Della Valle MF, Schievano C, Vannozzi I, Miragliotta V. Ultramicronized palmitoylethanolamide counteracts the effects of compound 48/80 in a canine skin organ culture model. Vet Dermatol 2017; 28:456-e104. [PMID: 28585337 DOI: 10.1111/vde.12456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ultramicronized palmitoylethanolamide (PEA-um) has been reported to reduce pruritus and skin lesions in dogs with moderate atopic dermatitis and pruritus. HYPOTHESIS/OBJECTIVES A canine ex vivo skin model was used to investigate the ability of PEA-um to counteract changes induced by compound 48/80, a well-known secretagogue that causes mast cell degranulation. ANIMALS Normal skin was obtained from three donor dogs subjected to surgery for reasons unrelated to the study. METHODS Cultured skin biopsy samples in triplicate were treated with 10 and 100 μg/mL compound 48/80, without or with 30 μM PEA-um. Mast cell (MC) degranulation, histamine release into the culture medium, local microvascular dilatation, epidermal thickness, keratinocyte proliferation and epidermal differentiation markers were evaluated. RESULTS Exposure of the skin organ culture to PEA-um 24 h before and 72 h concomitantly to compound 48/80 resulted in a significant decrease of degranulating MCs. PEA-um also reduced the histamine content in the culture medium by half, although the effect did not reach statistical significance. PEA-um significantly counteracted vasodilation induced by 100 μg/mL compound 48/80. Finally, PEA-um alone did not induce changes in epidermal thickness, differentiation markers, keratinocyte proliferation, MC density and/or degranulation. CONCLUSIONS AND CLINICAL IMPORTANCE Collectively, these results support the protective action PEA-um on the skin of dogs undergoing allergic changes.
Collapse
Affiliation(s)
- Francesca Abramo
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Carla Lenzi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Sonia Albertini
- Endocrinology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, Pisa, I-56100, Italy
| | - M Frederica Della Valle
- Science Information and Documentation Centre (CeDIS), Innovet Italia SRL, Via Egadi 7, Milano, I-20144, Italy
| | - Carlo Schievano
- Innovative Statistical Research SRL, Via Prato Della Valle 24, Padova, I-35123, Italy
| | - Iacopo Vannozzi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| |
Collapse
|
6
|
Gioacchini G, Rossi G, Carnevali O. Host-probiotic interaction: new insight into the role of the endocannabinoid system by in vivo and ex vivo approaches. Sci Rep 2017; 7:1261. [PMID: 28455493 PMCID: PMC5430882 DOI: 10.1038/s41598-017-01322-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system plays an important role in regulating inflammation in several chronic or anomalous gut inflammatory diseases. In vivo and ex vivo studies showed that 30 days treatment with a probiotic mix activated the endocannabinoid system in zebrafish. These results highlight the potential of this probiotic mixture to regulate immune cell function, by inducing gene expression of toll-like receptors and other immune related molecules. Furthermore, TUNEL assay showed a decrease in the number of apoptotic cells, and this finding was supported by a reduction in pro-apoptotic factors and an increase in anti-apoptotic molecules. The results presented here strengthen the molecular mechanisms activated by probiotic mix controlling immune response and inflammation.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Giacomo Rossi
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Via Fidanza 15, 62024, Matelica, MC, Italy
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy. .,INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy.
| |
Collapse
|
7
|
Hollins SL, Cairns MJ. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol 2016; 143:61-81. [PMID: 27317386 DOI: 10.1016/j.pneurobio.2016.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 06/11/2016] [Indexed: 01/09/2023]
Abstract
The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research.
Collapse
Affiliation(s)
- Sharon L Hollins
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Colocalization of cannabinoid receptor 1 with somatostatin and neuronal nitric oxide synthase in rat brain hippocampus. Brain Res 2015; 1622:114-26. [DOI: 10.1016/j.brainres.2015.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023]
|
9
|
IMMUNOMODULATORY PROPERTIES OF THE HUMAN INTESTINAL MICROBIOTA AND PROSPECTS FOR THE USE OF PROBIOTICS FOR PROPHYLAXIS AND CORRECTION OF INFLAMMATORY PROCESSES. BIOTECHNOLOGIA ACTA 2015. [DOI: 10.15407/biotech8.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Baron EP. Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It's Been …. Headache 2015; 55:885-916. [PMID: 26015168 DOI: 10.1111/head.12570] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The use of cannabis, or marijuana, for medicinal purposes is deeply rooted though history, dating back to ancient times. It once held a prominent position in the history of medicine, recommended by many eminent physicians for numerous diseases, particularly headache and migraine. Through the decades, this plant has taken a fascinating journey from a legal and frequently prescribed status to illegal, driven by political and social factors rather than by science. However, with an abundance of growing support for its multitude of medicinal uses, the misguided stigma of cannabis is fading, and there has been a dramatic push for legalizing medicinal cannabis and research. Almost half of the United States has now legalized medicinal cannabis, several states have legalized recreational use, and others have legalized cannabidiol-only use, which is one of many therapeutic cannabinoids extracted from cannabis. Physicians need to be educated on the history, pharmacology, clinical indications, and proper clinical use of cannabis, as patients will inevitably inquire about it for many diseases, including chronic pain and headache disorders for which there is some intriguing supportive evidence. OBJECTIVE To review the history of medicinal cannabis use, discuss the pharmacology and physiology of the endocannabinoid system and cannabis-derived cannabinoids, perform a comprehensive literature review of the clinical uses of medicinal cannabis and cannabinoids with a focus on migraine and other headache disorders, and outline general clinical practice guidelines. CONCLUSION The literature suggests that the medicinal use of cannabis may have a therapeutic role for a multitude of diseases, particularly chronic pain disorders including headache. Supporting literature suggests a role for medicinal cannabis and cannabinoids in several types of headache disorders including migraine and cluster headache, although it is primarily limited to case based, anecdotal, or laboratory-based scientific research. Cannabis contains an extensive number of pharmacological and biochemical compounds, of which only a minority are understood, so many potential therapeutic uses likely remain undiscovered. Cannabinoids appear to modulate and interact at many pathways inherent to migraine, triptan mechanisms ofaction, and opiate pathways, suggesting potential synergistic or similar benefits. Modulation of the endocannabinoid system through agonism or antagonism of its receptors, targeting its metabolic pathways, or combining cannabinoids with other analgesics for synergistic effects, may provide the foundation for many new classes of medications. Despite the limited evidence and research suggesting a role for cannabis and cannabinoids in some headache disorders, randomized clinical trials are lacking and necessary for confirmation and further evaluation.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Headache Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| |
Collapse
|
11
|
Chiurchiù V, Battistini L, Maccarrone M. Endocannabinoid signalling in innate and adaptive immunity. Immunology 2015; 144:352-364. [PMID: 25585882 DOI: 10.1111/imm.12441] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity. Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions. Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation. In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signalling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Luca Battistini
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Mauro Maccarrone
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy.,Centre of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
12
|
Bernabò N, Barboni B, Maccarrone M. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system. Comput Struct Biotechnol J 2014; 11:11-21. [PMID: 25379139 PMCID: PMC4212279 DOI: 10.1016/j.csbj.2014.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Veterinary Medicine, University of Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy
| | - Barbara Barboni
- Faculty of Veterinary Medicine, University of Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy
| | - Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy ; European Center for Brain Research (CERC), Santa Lucia Foundation, Via Ardeatina 306, 00143 Rome, Italy
| |
Collapse
|
13
|
Bernabò N, Barboni B, Maccarrone M. Systems biology analysis of the endocannabinoid system reveals a scale-free network with distinct roles for anandamide and 2-arachidonoylglycerol. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:646-54. [PMID: 24117401 DOI: 10.1089/omi.2013.0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We represented the endocannabinoid system (ECS) as a biological network, where ECS molecules are the nodes (123) and their interactions the links (189). ECS network follows a scale-free topology, which confers robustness against random damage, easy navigability, and controllability. Network topological parameters, such as clustering coefficient (i.e., how the nodes form clusters) of 0.0009, network diameter (the longest shortest path among all pairs of nodes) of 12, averaged number of neighbors (the mean number of connections per node) of 3.073, and characteristic path length (the expected distance between two connected nodes) of 4.715, suggested that molecular messages are transferred through the ECS network quickly and specifically. Interestingly, ∼75% of nodes are located on, or are active at the level of, the cell membrane. The hubs of ECS network are anandamide (AEA) and 2-arachidonoylglycerol (2-AG), which have also the highest value of betweeness centrality, and their removal causes network collapse into multiple disconnected components. Importantly, AEA is a ubiquitous player while 2-AG plays more restricted actions. Instead, the product of their degradation, arachidonic acid, and their hydrolyzing enzyme, fatty acid amide hydrolase, FAAH, have a marginal impact on ECS network, indeed their removal did not significantly affect its topology.
Collapse
Affiliation(s)
- Nicola Bernabò
- 1 Department of Biomedical Sciences, University of Teramo , Teramo, Italy
| | | | | |
Collapse
|