1
|
Lella C, Nestor L, De Bundel D, Vander Heyden Y, Van Eeckhaut A. Targeted Chiral Metabolomics of D-Amino Acids: Their Emerging Role as Potential Biomarkers in Neurological Diseases with a Focus on Their Liquid Chromatography-Mass Spectrometry Analysis upon Chiral Derivatization. Int J Mol Sci 2024; 25:12410. [PMID: 39596475 PMCID: PMC11595108 DOI: 10.3390/ijms252212410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
In neuroscience research, chiral metabolomics is an emerging field, in which D-amino acids play an important role as potential biomarkers for neurological diseases. The targeted chiral analysis of the brain metabolome, employing liquid chromatography (LC) coupled to mass spectrometry (MS), is a pivotal approach for the identification of biomarkers for neurological diseases. This review provides an overview of D-amino acids in neurological diseases and of the state-of-the-art strategies for the enantioselective analysis of chiral amino acids (AAs) in biological samples to investigate their putative role as biomarkers for neurological diseases. Fluctuations in D-amino acids (D-AAs) levels can be related to the pathology of neurological diseases, for example, through their role in the modulation of N-methyl-D-aspartate receptors and neurotransmission. Because of the trace presence of these biomolecules in mammals and the complex nature of biological matrices, highly sensitive and selective analytical methods are essential. Derivatization strategies with chiral reagents are highlighted as critical tools for enhancing detection capabilities. The latest advances in chiral derivatization reactions, coupled to LC-MS/MS analysis, have improved the enantioselective quantification of these AAs and allow the separation of several chiral metabolites in a single analytical run. The enhanced performances of these methods can provide an accurate correlation between specific D-AA profiles and disease states, allowing for a better understanding of neurological diseases and drug effects on the brain.
Collapse
Affiliation(s)
- Cinzia Lella
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Liam Nestor
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Yvan Vander Heyden
- Research Group Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Ann Van Eeckhaut
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| |
Collapse
|
2
|
Sun Y, Hu Q, Zuo J, Wang H, Guo Z, Wang Y, Tang H. Simultaneous Quantification of Carboxylate Enantiomers in Multiple Human Matrices with the Hydrazide-Assisted Ultrahigh-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Anal Chem 2024; 96:18141-18149. [PMID: 39475527 DOI: 10.1021/acs.analchem.4c04187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Many chiral carboxylic acids with α-amino, α-hydroxyl, and α-methyl groups are concurrently present in mammals establishing unique molecular phenotypes and multiple biological functions, especially host-microbiota symbiotic interactions. Their chirality-resolved simultaneous quantification is essential to reveal the biochemical details of physiology and pathophysiology, though challenging with their low abundances in some biological matrices and difficulty in enantiomer resolution. Here, we developed a method of the chirality-resolved metabolomics with sensitivity-enhanced quantitation via probe-promotion (Met-SeqPro) for analyzing these chiral carboxylic acids. We designed and synthesized a hydrazide-based novel chiral probe, (S)-benzoyl-proline-hydrazide (SBPH), to convert carboxylic acids into amide diastereomers to enhance their retention and chiral resolution on common C18 columns. Using the d5-SBPH-labeled enantiomers as internal standards, we then developed an optimized ultrahigh-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous quantification of 60 enantiomers of 30 chiral carboxylic acids in one run. This enantiomer-resolved method showed excellent sensitivity (LOD < 4 fmol-on-column), linearity (R2 > 0.992), precision (CV < 15%), accuracy (|RE| < 20%), and recovery (80-120%) in multiple biological matrices. With the method, we then quantified 60 chiral carboxylic acids in human urine, plasma, feces, and A549 cells to define their metabolomic phenotypes. This provides basic data for human phenomics and a promising tool for investigating the mammal-microbiome symbiotic interactions.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qingyu Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiali Zuo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - He Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhendong Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Qiu B, Boudker O. Structural basis of the excitatory amino acid transporter 3 substrate recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611541. [PMID: 39282329 PMCID: PMC11398500 DOI: 10.1101/2024.09.05.611541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Excitatory amino acid transporters (EAATs) reside on cell surfaces and uptake substrates, including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs, EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione synthesis. Recent work suggests that EAAT3 also transports the oncometabolite R-2-hydroxyglutarate (R-2HG). Here, we examined the structural basis of substrate promiscuity by determining the cryo-EM structures of EAAT3 bound to different substrates. We found that L-cysteine binds to EAAT3 in thiolate form, and EAAT3 recognizes different substrates by fine-tuning local conformations of the coordinating residues. However, using purified human EAAT3, we could not observe R-2HG binding or transport. Imaging of EAAT3 bound to L-cysteine revealed several conformational states, including an outward-facing state with a semi-open gate and a disrupted sodium-binding site. These structures illustrate that the full gate closure, coupled with the binding of the last sodium ion, occurs after substrate binding. Furthermore, we observed that different substrates affect how the transporter distributes between a fully outward-facing conformation and intermediate occluded states on a path to the inward-facing conformation, suggesting that translocation rates are substrate-dependent.
Collapse
Affiliation(s)
- Biao Qiu
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
4
|
Benoit SL, Maier RJ. d-aspartate, an amino-acid important for human health, supports anaerobic respiration in several Campylobacter species. Res Microbiol 2024; 175:104219. [PMID: 38945250 DOI: 10.1016/j.resmic.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Despite being classified as microaerophilic microorganisms, most Campylobacter species can grow anaerobically, using formate or molecular hydrogen (H2) as electron donors, and various nitrogenous and sulfurous compounds as electron acceptors. Herein, we showed that both l-asparagine (l-Asn) and l-aspartic acid (l-Asp) bolster H2-driven anaerobic growth in several Campylobacter species, whereas the d-enantiomer form of both asparagine (d-Asn) and aspartic acid (d-Asp) only increased anaerobic growth in Campylobacter concisus strain 13826 and Campylobacter ureolyticus strain NCTC10941. A gene annotated as racD encoding for a putative d/l-Asp racemase was identified in the genome of both strains. Disruption of racD in Cc13826 resulted in the inability of the mutant strain to use either d-enantiomer during anaerobic growth. Hence, our results suggest that the racD gene is required for campylobacters to use either d-Asp or d-Asn. The use of d-Asp by various human opportunistic bacterial pathogens, including C. concisus, C. ureolyticus, and also possibly select strains of Campylobacter gracilis, Campylobacter rectus and Campylobacter showae, is significant, because d-Asp is an important signal molecule for both human nervous and neuroendocrine systems. To our knowledge, this is the first report of pathogens scavenging a d-amino acid essential for human health.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, GA, 30602, United States; Center for Metalloenzyme Studies, University of Georgia, Athens, GA, 30602, United States.
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, GA, 30602, United States; Center for Metalloenzyme Studies, University of Georgia, Athens, GA, 30602, United States
| |
Collapse
|
5
|
Falvo S, Santillo A, Di Fiore MM, Venditti M, Grillo G, Latino D, Baccari I, Petito G, Chieffi Baccari G. New Insights into D-Aspartate Signaling in Testicular Activity. Cells 2024; 13:1400. [PMID: 39195288 DOI: 10.3390/cells13161400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
D-aspartate (D-Asp) is an amino acid found in high concentrations in the testis and pituitary gland. Increasing evidence suggests that D-Asp promotes spermatogenesis by activating testosterone production in the Leydig cells via LH release from the pituitary gland. In vitro studies indicate that D-Asp may also influence steroidogenesis and spermatogenesis through autocrine and paracrine signals. D-Asp enhances StAR and steroidogenic enzyme expressions, facilitating testicular cell proliferation via the GluR/ERK1/2 pathway. Moreover, it supports spermatogenesis by enhancing the mitochondrial function in spermatocytes, aiding in the metabolic shift during meiosis. Enhanced mitochondrial function, along with improved MAM stability and reduced ER stress, has been observed in Leydig and Sertoli cells treated with D-Asp, indicating potential benefits in steroidogenesis and spermatogenesis efficiency. Conversely, D-Asp exerts a notable anti-apoptotic effect in the testis via the AMPAR/AKT pathway, potentially mediated by antioxidant enzyme modulation to mitigate testicular oxidative stress. This review lays the groundwork for future investigations into the molecules promoting spermatogenesis by stimulating endogenous testosterone biosynthesis, with D-amino acids emerging as promising candidates.
Collapse
Affiliation(s)
- Sara Falvo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Alessandra Santillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Maria Maddalena Di Fiore
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', 80138 Napoli, Italy
| | - Giulia Grillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Debora Latino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Isabella Baccari
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', 80138 Napoli, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - Gabriella Chieffi Baccari
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| |
Collapse
|
6
|
Ozaki M, Nakade T, Shimotsuma M, Ikeda A, Kuranaga T, Kakeya H, Hirose T. Simultaneous analysis of DL-Amino acids in foods and beverages using a highly sensitive chiral resolution labeling reagent. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124239. [PMID: 39059318 DOI: 10.1016/j.jchromb.2024.124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Amino acids with various functions are abundant in living organisms and foods. Recent advances in analytical technology show that trace amounts of D-amino acids exist in living organisms and foods. In addition, studies show that these amino acids are involved in various physiological functions that differ from those of L-amino acids. Thus, a technique for analyzing DL-amino acids is required. However, the simultaneous separation and highly sensitive detection of DL-amino acids are complicated; therefore, highly sensitive analytical methods that can rapidly separate and identify compounds are required. We previously developed our original chiral resolution labeling reagents for the separation and highly sensitive detection of DL-amino acids. Here, we developed a simple method for the rapid separation and highly sensitive detection of DL-amino acids in various foods and beverages by liquid chromatography-mass spectrometry (LC-MS) using an octadecyl (C18) column after labeling with 1-fluoro-2,4-dinitrophenyl-5-D-leucine-N,N-dimethylethylenediamineamide (D-FDLDA; enantiomeric excess > 99.9 %). In addition, we synthesized a stable isotope (13C6)-labeled D-FDLDA (13C6-D-FDLDA) and established an analytical method that can accurately identify the peak of each DL-amino acid. MS sensitivity of DL-amino acids labeled with our labeling reagent was higher than that of conventional labeling reagents (Marfey's reagents). The labeling reagent was neither desorbed from each DL-amino acid nor degraded for at least 1 week at 4 °C. Furthermore, we determined the DL-amino acid contents in foods and beverages using the proposed method, and differences in the total amino acid content and D/L ratio in each food and beverage were observed.
Collapse
Affiliation(s)
- Makoto Ozaki
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Tomomi Nakade
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Motoshi Shimotsuma
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Akari Ikeda
- TAIYO NIPPON SANSO Corporation, SI Innovation Center, 2008-2 Wada, Tama, Tokyo 206-0001, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan.
| | - Tsunehisa Hirose
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| |
Collapse
|
7
|
Ratinho L, Bacri L, Thiebot B, Cressiot B, Pelta J. Identification and Detection of a Peptide Biomarker and Its Enantiomer by Nanopore. ACS CENTRAL SCIENCE 2024; 10:1167-1178. [PMID: 38947203 PMCID: PMC11212137 DOI: 10.1021/acscentsci.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Until now, no fast, low-cost, and direct technique exists to identify and detect protein/peptide enantiomers, because their mass and charge are identical. They are essential since l- and d-protein enantiomers have different biological activities due to their unique conformations. Enantiomers have potential for diagnostic purposes for several diseases or normal bodily functions but have yet to be utilized. This work uses an aerolysin nanopore and electrical detection to identify vasopressin enantiomers, l-AVP and d-AVP, associated with different biological processes and pathologies. We show their identification according to their conformations, in either native or reducing conditions, using their specific electrical signature. To improve their identification, we used a principal component analysis approach to define the most relevant electrical parameters for their identification. Finally, we used the Monte Carlo prediction to assign each event type to a specific l- or d-AVP enantiomer.
Collapse
Affiliation(s)
- Laura Ratinho
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 95000, Cergy, France
| | - Laurent Bacri
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Bénédicte Thiebot
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 95000, Cergy, France
| | - Benjamin Cressiot
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 95000, Cergy, France
| | - Juan Pelta
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| |
Collapse
|
8
|
Katane M, Homma H. Biosynthesis and Degradation of Free D-Amino Acids and Their Physiological Roles in the Periphery and Endocrine Glands. Biol Pharm Bull 2024; 47:562-579. [PMID: 38432912 DOI: 10.1248/bpb.b23-00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It was long believed that D-amino acids were either unnatural isomers or laboratory artifacts, and that the important functions of amino acids were exerted only by L-amino acids. However, recent investigations have revealed a variety of D-amino acids in mammals that play important roles in physiological functions, including free D-serine and D-aspartate that are crucial in the central nervous system. The functions of several D-amino acids in the periphery and endocrine glands are also receiving increasing attention. Here, we present an overview of recent advances in elucidating the physiological roles of D-amino acids, especially in the periphery and endocrine glands.
Collapse
Affiliation(s)
- Masumi Katane
- Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Hiroshi Homma
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
9
|
Lee C, Lee DK, Wei IA, Qiu TA, Rubakhin SS, Roper MG, Sweedler JV. Relations between Glucose and d-Amino Acids in the Modulation of Biochemical and Functional Properties of Rodent Islets of Langerhans. ACS OMEGA 2023; 8:47723-47734. [PMID: 38144114 PMCID: PMC10733910 DOI: 10.1021/acsomega.3c05983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023]
Abstract
The cell-to-cell signaling role of d-amino acids (d-AAs) in the mammalian endocrine system, particularly in the islets of Langerhans, has drawn growing interest for their potential involvement in modulating glucose metabolism. Previous studies found colocalization of serine racemase [produces d-serine (d-Ser)] and d-alanine (d-Ala) within insulin-secreting beta cells and d-aspartate (d-Asp) within glucagon-secreting alpha cells. Expressed in the islets, functional N-methyl-d-aspartate receptors are involved in the modulation of glucose-stimulated insulin secretion and have binding sites for several d-AAs. However, knowledge of the regulation of d-AA levels in the islets during glucose stimulation as well as the response of islets to different levels of extracellular d-AAs is limited. In this study, we determined the intracellular and extracellular levels of d-Ser, d-Ala, and d-Asp in cultures of isolated rodent islets exposed to different levels of extracellular glucose. We found that the intracellular levels of the enantiomers demonstrated large variability and, in general, were not affected by extracellular glucose levels. However, significantly lower levels of extracellular d-Ser and d-Ala were observed in the islet media supplemented with 20 mM concentration of glucose compared to the control condition utilizing 3 mM glucose. Glucose-induced oscillations of intracellular free calcium concentration ([Ca2+]i), a proxy for insulin secretion, were modulated by the exogenous application of d-Ser and d-Ala but not by their l-stereoisomers. Our results provide new insights into the roles of d-AAs in the biochemistry and function of pancreatic islets.
Collapse
Affiliation(s)
- Cindy
J. Lee
- Department
of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Dong-Kyu Lee
- Department
of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - I-An Wei
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - Tian A. Qiu
- Department
of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department
of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael G. Roper
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - Jonathan V. Sweedler
- Department
of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Anirudhan A, Mahema S, Ahmad SF, Emran TB, Ahmed SSSJ, Paramasivam P. Screening of Crucial Cytosolicproteins Interconnecting the Endoplasmic Reticulum and Mitochondria in Parkinson's Disease and the Impact of Anti-Parkinson Drugs in the Preservation of Organelle Connectivity. Brain Sci 2023; 13:1551. [PMID: 38002511 PMCID: PMC10670093 DOI: 10.3390/brainsci13111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction is well-established in Parkinson's disease (PD); however, its dysfunctions associating with cell organelle connectivity remain unknown. We aimed to establish the crucial cytosolic protein involved in organelle connectivity between mitochondria and the endopalmic reticulum (ER) through a computational approach by constructing an organelle protein network to extract functional clusters presenting the crucial PD protein connecting organelles. Then, we assessed the influence of anti-parkinsonism drugs (n = 35) on the crucial protein through molecular docking and molecular dynamic simulation and further validated its gene expression in PD participants under, istradefylline (n = 25) and amantadine (n = 25) treatment. Based on our investigation, D-aspartate oxidase (DDO )protein was found to be the critical that connects both mitochondria and the ER. Further, molecular docking showed that istradefylline has a high affinity (-9.073 kcal/mol) against DDO protein, which may disrupt mitochondrial-ER connectivity. While amantadine (-4.53 kcal/mol) shows negligible effects against DDO that contribute to conformational changes in drug binding, Successively, DDO gene expression was downregulated in istradefylline-treated PD participants, which elucidated the likelihood of an istradefylline off-target mechanism. Overall, our findings illuminate the off-target effects of anti-parkinsonism medications on DDO protein, enabling the recommendation of off-target-free PD treatments.
Collapse
Affiliation(s)
- Athira Anirudhan
- Central Research Laboratory, Believers Church Medical College Hospital, Kuttapuzha, Thiruvalla 689101, Kerala, India
| | - S. Mahema
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Prabu Paramasivam
- Madras Diabetes Research Foundation and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & IDF Centre of Education, Gopalapuram, Chennai 602105, Tamil Nadu, India
- Department of Neurology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
11
|
Kawamura Y, Ishida C, Miyata R, Miyata A, Hayashi S, Fujinami D, Ito S, Nakano S. Structural and functional analysis of hyper-thermostable ancestral L-amino acid oxidase that can convert Trp derivatives to D-forms by chemoenzymatic reaction. Commun Chem 2023; 6:200. [PMID: 37737277 PMCID: PMC10517122 DOI: 10.1038/s42004-023-01005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Production of D-amino acids (D-AAs) on a large-scale enables to provide precursors of peptide therapeutics. In this study, we designed a novel L-amino acid oxidase, HTAncLAAO2, by ancestral sequence reconstruction, exhibiting high thermostability and long-term stability. The crystal structure of HTAncLAAO2 was determined at 2.2 Å by X-ray crystallography, revealing that the enzyme has an octameric form like a "ninja-star" feature. Enzymatic property analysis demonstrated that HTAncLAAO2 exhibits three-order larger kcat/Km values towards four L-AAs (L-Phe, L-Leu, L-Met, and L-Ile) than that of L-Trp. Through screening the variants, we obtained the HTAncLAAO2(W220A) variant, which shows a > 6-fold increase in kcat value toward L-Trp compared to the original enzyme. This variant applies to synthesizing enantio-pure D-Trp derivatives from L- or rac-forms at a preparative scale. Given its excellent properties, HTAncLAAO2 would be a starting point for designing novel oxidases with high activity toward various amines and AAs.
Collapse
Affiliation(s)
- Yui Kawamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Chiharu Ishida
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryo Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Azusa Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Seiichiro Hayashi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Fujinami
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
- PREST, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
12
|
Wang C, Huang L, Jin S, Hou R, Chen M, Liu Y, Tang W, Li T, Yin Y, He L. d-Aspartate in Low-Protein Diets Improves the Pork Quality by Regulating Energy and Lipid Metabolism via the Gut Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12417-12430. [PMID: 37578298 DOI: 10.1021/acs.jafc.3c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
d-Aspartate is critical in maintaining hormone secretion and reproductive development in mammals. This study investigated the mechanism of different d-aspartate levels (0, 0.005, 0.05, and 0.5% d-aspartate) in low-protein diets on growth performance and meat quality by mediating the gut microbiota alteration in pigs. We found that adding 0.005% d-aspartate to a low-protein diet could dramatically improve the growth performance during the weaned and growing periods. Dietary d-aspartate with different levels markedly increased the back fat, and 0.5% d-aspartate significantly increased the redness in 24 h and reduced the shear force of the longissimus dorsi (LD) muscle. Moreover, d-aspartate treatments decreased the mRNA expression of MyHC II a and MyHC IIx in the LD muscle. The protein expression of MyH1, MyH7, TFAM, FOXO1, CAR, UCP2, and p-AMPK was upregulated by 0.005% d-aspartate. Additionally, the abundance of Alistipes, Akkermansia, and the [Eubacterium]_coprostanoligenes_group in the intestinal chyme of pigs was significantly decreased by d-aspartate treatments at the genus level, which was also accompanied by a significant decrease in acetate content. These differential microorganisms were significantly correlated with meat quality characteristics. These results indicated that d-aspartate in low-protein diets could improve the growth performance and meat quality in pigs by regulating energy and lipid metabolism via the alteration of gut microbiota.
Collapse
Affiliation(s)
- Chenyu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Le Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Shunshun Jin
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ruoxin Hou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Mingzhe Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yonghui Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
13
|
Liu Y, Wu Z, Armstrong DW, Wolosker H, Zheng Y. Detection and analysis of chiral molecules as disease biomarkers. Nat Rev Chem 2023; 7:355-373. [PMID: 37117811 PMCID: PMC10175202 DOI: 10.1038/s41570-023-00476-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 04/30/2023]
Abstract
The chirality of small metabolic molecules is important in controlling physiological processes and indicating the health status of humans. Abnormal enantiomeric ratios of chiral molecules in biofluids and tissues occur in many diseases, including cancers and kidney and brain diseases. Thus, chiral small molecules are promising biomarkers for disease diagnosis, prognosis, adverse drug-effect monitoring, pharmacodynamic studies and personalized medicine. However, it remains difficult to achieve cost-effective and reliable analysis of small chiral molecules in clinical procedures, in part owing to their large variety and low concentration. In this Review, we describe current and emerging techniques that detect and quantify small-molecule enantiomers and their biological importance.
Collapse
Affiliation(s)
- Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zilong Wu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX, USA.
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Yuebing Zheng
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
14
|
Cervetto C, Pistollato F, Amato S, Mendoza-de Gyves E, Bal-Price A, Maura G, Marcoli M. Assessment of neurotransmitter release in human iPSC-derived neuronal/glial cells: a missing in vitro assay for regulatory developmental neurotoxicity testing. Reprod Toxicol 2023; 117:108358. [PMID: 36863571 PMCID: PMC10112275 DOI: 10.1016/j.reprotox.2023.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) and their differentiated neuronal/glial derivatives have been recently considered suitable to assess in vitro developmental neurotoxicity (DNT) triggered by exposure to environmental chemicals. The use of human-relevant test systems combined with in vitro assays specific for different neurodevelopmental events, enables a mechanistic understanding of the possible impact of environmental chemicals on the developing brain, avoiding extrapolation uncertainties associated with in vivo studies. Currently proposed in vitro battery for regulatory DNT testing accounts for several assays suitable to study key neurodevelopmental processes, including NSC proliferation and apoptosis, differentiation into neurons and glia, neuronal migration, synaptogenesis, and neuronal network formation. However, assays suitable to measure interference of compounds with neurotransmitter release or clearance are at present not included, which represents a clear gap of the biological applicability domain of such a testing battery. Here we applied a HPLC-based methodology to measure the release of neurotransmitters in a previously characterized hiPSC-derived NSC model undergoing differentiation towards neurons and glia. Glutamate release was assessed in control cultures and upon depolarization, as well as in cultures repeatedly exposed to some known neurotoxicants (BDE47 and lead) and chemical mixtures. Obtained data indicate that these cells have the ability to release glutamate in a vesicular manner, and that both glutamate clearance and vesicular release concur in the maintenance of extracellular glutamate levels. In conclusion, analysis of neurotransmitter release is a sensitive readout that should be included in the envisioned battery of in vitro assays for DNT testing.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Centro 3R, Pisa, Italy.
| | | | - Sarah Amato
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre, JRC, Ispra, Italy.
| | - Guido Maura
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy
| | - Manuela Marcoli
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Centro 3R, Pisa, Italy.
| |
Collapse
|
15
|
Liu M, Li M, He J, He Y, Yang J, Sun Z. Chiral Amino Acid Profiling in Serum Reveals Potential Biomarkers for Alzheimer's Disease. J Alzheimers Dis 2023; 94:291-301. [PMID: 37248903 DOI: 10.3233/jad-230142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disease, and increasing evidence has linked dysregulation of amino acids to AD pathogenesis. However, the existing studies often ignore the chirality of amino acids, and some results are inconsistent and controversial. The changes of amino acid profiles in AD from the perspective of enantiomers remain elusive. OBJECTIVE The purpose of this study is to investigate whether the levels of amino acids, especially D-amino acids, are deregulated in the peripheral serum of AD patients, with the ultimate goal of discovering novel biomarkers for AD. METHODS The chiral amino acid profiles were determined by HPLC-MS/MS with a pre-column derivatization method. Experimental data obtained from 37 AD patients and 34 healthy controls (HC) were statistically analyzed. RESULTS Among the 35 amino acids detected, D-proline, D/total-proline ratio, D-aspartate, and D/total-aspartate ratio were decreased, while D-phenylalanine was elevated in AD compared to HC. Significant age-dependent increases in D-proline, D/total-proline ratio, and D-phenylalanine were observed in HC, but not in AD. Receiver operator characteristic analyses of the combination of D-proline, D-aspartate, D-phenylalanine, and age for discriminating AD from HC provided satisfactory area under the curve (0.87), specificity (97.0%), and sensitivity (83.8%). Furthermore, the D-aspartate level was significantly decreased with the progression of AD, as assessed by the Clinical Dementia Rating Scale and Mini-Mental State Examination. CONCLUSION The panels of D-proline, D-phenylalanine, and D-aspartate in peripheral serum may serve as novel biomarker candidates for AD. The latter parameter is further associated with the severity of AD.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mo Li
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Jing He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Nasyrova RF, Khasanova AK, Altynbekov KS, Asadullin AR, Markina EA, Gayduk AJ, Shipulin GA, Petrova MM, Shnayder NA. The Role of D-Serine and D-Aspartate in the Pathogenesis and Therapy of Treatment-Resistant Schizophrenia. Nutrients 2022; 14:5142. [PMID: 36501171 PMCID: PMC9736950 DOI: 10.3390/nu14235142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia (Sch) is a severe and widespread mental disorder. Antipsychotics (APs) of the first and new generations as the first-line treatment of Sch are not effective in about a third of cases and are also unable to treat negative symptoms and cognitive deficits of schizophrenics. This explains the search for new therapeutic strategies for a disease-modifying therapy for treatment-resistant Sch (TRS). Biological compounds are of great interest to researchers and clinicians, among which D-Serine (D-Ser) and D-Aspartate (D-Asp) are among the promising ones. The Sch glutamate theory suggests that neurotransmission dysfunction caused by glutamate N-methyl-D-aspartate receptors (NMDARs) may represent a primary deficiency in this mental disorder and play an important role in the development of TRS. D-Ser and D-Asp are direct NMDAR agonists and may be involved in modulating the functional activity of dopaminergic neurons. This narrative review demonstrates both the biological role of D-Ser and D-Asp in the normal functioning of the central nervous system (CNS) and in the pathogenesis of Sch and TRS. Particular attention is paid to D-Ser and D-Asp as promising components of a nutritive disease-modifying therapy for TRS.
Collapse
Affiliation(s)
- Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Aiperi K. Khasanova
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, The Bashkir State Medical University, 450008 Ufa, Russia
| | - Ekaterina A. Markina
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Arseny J. Gayduk
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, 119121 Moscow, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| |
Collapse
|
17
|
Louters M, Pearlman M, Solsrud E, Pearlman A. Functional hypogonadism among patients with obesity, diabetes, and metabolic syndrome. Int J Impot Res 2022; 34:714-720. [PMID: 34775481 DOI: 10.1038/s41443-021-00496-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
Testosterone deficiency, defined as low total testosterone combined with physical, cognitive, and sexual signs and/or symptoms, is a common finding in adult men. Functional hypogonadism (FH) is defined as borderline low testosterone (T) secondary to aging and/or comorbid conditions such as diabetes, obesity, and/or metabolic syndrome. The relationship between FH and metabolic disorders is multifactorial and bidirectional, and associated with a disruption of the hypothalamic-pituitary-gonadal axis. Resolution of FH requires the correct diagnosis and treatment of the underlying condition(s) with lifestyle modifications considered first-line therapy. Normalization of T levels through dietary modifications such as caloric restriction and restructuring of macronutrients have recently been explored. Exercise and sleep quality have been associated with T levels, and patients should be encouraged to practice resistance training and sleep seven to nine hours per night. Supplementation with vitamin D and Trigonella foenum-graecum may also be considered when optimizing T levels. Ultimately, treatment of FH requires a multidisciplinary approach and personalized patient care.
Collapse
Affiliation(s)
- Marne Louters
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| | - Michelle Pearlman
- Division of Digestive and Liver Diseases, University of Miami, Miami, FL, USA
| | - Emily Solsrud
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy Pearlman
- Department of Urology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
18
|
Jafar-Nezhad Ivrigh Z, Fahimi-Kashani N, Morad R, Jamshidi Z, Hormozi-Nezhad MR. Toward visual chiral recognition of amino acids using a wide-range color tonality ratiometric nanoprobe. Anal Chim Acta 2022; 1231:340386. [DOI: 10.1016/j.aca.2022.340386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
|
19
|
Lee CJ, Schnieders JH, Rubakhin SS, Patel AV, Liu C, Naji A, Sweedler JV. d-Amino Acids and Classical Neurotransmitters in Healthy and Type 2 Diabetes-Affected Human Pancreatic Islets of Langerhans. Metabolites 2022; 12:metabo12090799. [PMID: 36144204 PMCID: PMC9501506 DOI: 10.3390/metabo12090799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The pancreatic islets of Langerhans are clusters of cells that function as endocrine units synthesizing and releasing insulin and a range of additional peptide hormones. The structural and chemical characteristics of islets change during type 2 diabetes development. Although a range of metabolites including neurotransmitters has been reported in rodent islets, the involvement of these cell-to-cell signaling molecules within human pancreatic islets in the pathophysiology of type 2 diabetes is not well known, despite studies suggesting that these molecules impact intra- and inter-islet signaling pathways. We characterize the enigmatic cell-to-cell signaling molecules, d-serine (d-Ser) and d-aspartate (d-Asp), along with multiple classical neurotransmitters and related molecules, in healthy versus type 2 diabetes-affected human islets using capillary electrophoresis separations. Significantly reduced d-Ser percentage and gamma-aminobutyric acid (GABA) levels were found in type 2 diabetes-affected islets compared to healthy islets. In addition, the negative correlations of many of the signaling molecules, such as d-Ser percentage (r = −0.35), d-Asp (r = −0.32), serotonin (r = −0.42), and GABA (r = −0.39) levels, with hemoglobin A1c (HbA1c) levels and thus with the progression of type 2 diabetes further demonstrate the disruption in intra- or inter-islet signaling pathways and suggest that these cell-to-cell signaling molecules may be potential therapeutic targets.
Collapse
Affiliation(s)
- Cindy J. Lee
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jack H. Schnieders
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Stanislav S. Rubakhin
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Amit V. Patel
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan V. Sweedler
- Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
20
|
Regulation of l- and d-Aspartate Transport and Metabolism in Acinetobacter baylyi ADP1. Appl Environ Microbiol 2022; 88:e0088322. [PMID: 35862682 PMCID: PMC9361831 DOI: 10.1128/aem.00883-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The regulated uptake and consumption of d-amino acids by bacteria remain largely unexplored, despite the physiological importance of these compounds. Unlike other characterized bacteria, such as Escherichia coli, which utilizes only l-Asp, Acinetobacter baylyi ADP1 can consume both d-Asp and l-Asp as the sole carbon or nitrogen source. As described here, two LysR-type transcriptional regulators (LTTRs), DarR and AalR, control d- and l-Asp metabolism in strain ADP1. Heterologous expression of A. baylyi proteins enabled E. coli to use d-Asp as the carbon source when either of two transporters (AspT or AspY) and a racemase (RacD) were coexpressed. A third transporter, designated AspS, was also discovered to transport Asp in ADP1. DarR and/or AalR controlled the transcription of aspT, aspY, racD, and aspA (which encodes aspartate ammonia lyase). Conserved residues in the N-terminal DNA-binding domains of both regulators likely enable them to recognize the same DNA consensus sequence (ATGC-N7-GCAT) in several operator-promoter regions. In strains lacking AalR, suppressor mutations revealed a role for the ClpAP protease in Asp metabolism. In the absence of the ClpA component of this protease, DarR can compensate for the loss of AalR. ADP1 consumed l- and d-Asn and l-Glu, but not d-Glu, as the sole carbon or nitrogen source using interrelated pathways. IMPORTANCE A regulatory scheme was revealed in which AalR responds to l-Asp and DarR responds to d-Asp, a molecule with critical signaling functions in many organisms. The RacD-mediated interconversion of these isomers causes overlap in transcriptional control in A. baylyi. Our studies improve understanding of transport and regulation and lay the foundation for determining how regulators distinguish l- and d-enantiomers. These studies are relevant for biotechnology applications, and they highlight the importance of d-amino acids as natural bacterial growth substrates.
Collapse
|
21
|
Chen YT, Li B, Chen JL, Su XC. Simultaneous Discrimination and Quantification of Enantiomeric Amino Acids under Physiological Conditions by Chiral 19F NMR Tag. Anal Chem 2022; 94:7853-7860. [PMID: 35617740 DOI: 10.1021/acs.analchem.2c00218] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enantiomeric analysis is of great significance in chemistry, chemical biology and pharmaceutical research. We herein propose a chiral 19F NMR tag containing an amino reactive NHS group to discriminate the enantiomeric amino acids under physiological conditions by NMR spectroscopy. The chiral 19F NMR tag readily forms stable amide products with the amino acids in aqueous solution. The stereospecific chemistry of enantiomeric amino acids is discriminated by a stereogenic carbon bonded with a 19F atom and is therefore decoded by the 19F reporter and manifested in the distinct 19F chemical shift. The chemical shift difference (ΔΔδ) of the chiral 19F NMR tag derived enantiomeric amino acids variants has a broad chemical shift range between -1.13 to 1.68 ppm, indicating the high sensitivity of the chiral 19F NMR tag to the stereospecific environment surrounding the individual amino acids. The distinguishable chemical shift produced by the chiral 19F NMR tag permits simultaneous discrimination and quantification of the enantiomeric amino acids in a mixture. The high fidelity of the chiral 19F NMR tag affords high-accuracy determination of the enantiomeric composition of amino acids by simple 1D NMR under physiological conditions.
Collapse
Affiliation(s)
- Ya-Ting Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Oral D-Aspartate Treatment Improves Sperm Fertility in Both Young and Adult B6N Mice. Animals (Basel) 2022; 12:ani12111350. [PMID: 35681815 PMCID: PMC9179375 DOI: 10.3390/ani12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Investigations concerning the impact of D-Aspartate on fertility suggest that it has a positive influence on the in vitro fertilization rate in young C57BL/6N mice. Here, we demonstrated that adult C57BL/6N mice that received an oral treatment of D-Aspartate also have a higher fertilizing capability and the quality of their spermatozoa increased after only two weeks of treatment. Hence, this study gives us new insights on the role of D-Aspartate in the regulation of the reproductive activity in both young and adult mice. Abstract D-Aspartate (D-Asp) treatment improved the fertility of young male C57BL/6N mice in vivo revealing a direct role on capacitation, acrosome reaction, and fertility in vitro in young males only. We investigated whether the positive effect of D-Asp on fertility could be extended to adult males and evaluated the efficacy of a 2- or 4-week-treatment in vivo. Therefore, 20 mM sodium D-Asp was supplied in drinking water to males of different ages so that they were 9 or 16 weeks old at the end of the experiments. After sperm freezing, the in vitro fertilization (IVF) rate, the birth rate, hormone levels (luteinizing hormone (LH), epitestosterone, and testosterone), the sperm quality (morphology, abnormalities, motility, and velocity), the capacitation rate, and the acrosome reaction were investigated. Oral D-Asp treatment improves the fertilizing capability in mice regardless of the age of the animals. Importantly, a short D-Asp treatment of 2 weeks in young males elevates sperm parameters to the levels of untreated adult animals. In vivo, D-Asp treatment highly improves sperm quality but not sperm concentration. Therefore, D-Asp plays a beneficial role in mouse male fertility and may be highly relevant for cryorepositories to improve mouse sperm biobanking.
Collapse
|
23
|
Mechanism of high D-aspartate production in the lactic acid bacterium Latilactobacillus sp. strain WDN19. Appl Microbiol Biotechnol 2022; 106:2651-2663. [PMID: 35305124 DOI: 10.1007/s00253-022-11870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 11/02/2022]
Abstract
D-Aspartate (D-Asp) is a useful compound for a semisynthetic antibiotic and has potentially beneficial effects on humans. Several lactic acid bacteria (LAB) species produce D-Asp as a component of cell wall peptidoglycan. We previously isolated a LAB strain (named strain WDN19) that can extracellularly produce a large amount of D-Asp. Here, we show the factors that contribute to high D-Asp production ability. Strain WDN19 was most closely related to Latilactobacillus curvatus. The D-Asp production ability of strain WDN19 in a rich medium was 13.7-fold higher than that of L. curvatus DSM 20019. A major part of D-Asp was synthesized from L-Asp contained in the medium by aspartate racemase (RacD). During their cultivation, the RacD activity in strain WDN19 was higher than in strain DSM 20019, especially much higher in the early exponential growth phase because of the higher racD transcription and the higher activity of RacD itself of strain WDN19. In a synthetic medium, the extracellular production of D,L-Asp was observed in strain WDN19 but not in strain DSM 20019. The addition of L-asparagine (L-Asn) to the medium increased and gave D,L-Asp production in strains WDN19 and DSM 20019, respectively, suggesting L-Asp synthesis by L-asparaginase (AsnA). The L-Asn uptake ability of the strains was similar, but the AsnA activity in the middle exponential and early stationary growth phases and intracellular D,L-Asp was much higher in strain WDN19. In their genome sequences, only an aspartate aminotransferase gene was found among L-Asp-metabolizing enzymes, except for RacD, but was disrupted in strain WDN19 by transposon insertion. These observations indicated that the high D-Asp production ability of strain WDN19 was mainly based on high RacD and AnsA activities and L-Asp supply. KEY POINTS: • Strain WDN19 was suggested to be a strain of Latilactobacillus curvatus. • Extracellular high d-Asp production ability was not a common feature of L. curvatus. • High d-Asp production was due to high RacD and AnsA activities and l-Asp supply.
Collapse
|
24
|
Yoshikawa M, Kan T, Shirose K, Watanabe M, Matsuda M, Ito K, Kawaguchi M. Free d-Amino Acids in Salivary Gland in Rat. BIOLOGY 2022; 11:390. [PMID: 35336764 PMCID: PMC8944958 DOI: 10.3390/biology11030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Free d-amino acids, which are enantiomers of l-amino acids, are found in mammals, including humans, and play an important role in a range of physiological functions in the central nervous system and peripheral tissues. Several d-amino acids have been observed in saliva, but their origin and the enzymes involved in their metabolism and catabolism remain to be clarified. In the present study, large amounts of d-aspartic acid and small amounts of d-serine and d-alanine were detected in all three major salivary glands in rat. No other d-enantiomers were detected. Protein expression of d-amino acid oxidase and d-aspartate oxidase, the enzymes responsible for the oxidative deamination of neutral and dicarboxylic d-amino acids, respectively, were detected in all three types of salivary gland. Furthermore, protein expression of the d-serine metabolic enzyme, serine racemase, in parotid glands amounted to approximately 40% of that observed in the cerebral cortex. The N-methyl-d-aspartic acid subunit proteins NR1 and NR2D were detected in all three major salivary glands. The results of the present study suggest that d-amino acids play a physiological role in a range of endocrine and exocrine function in salivary glands.
Collapse
Affiliation(s)
- Masanobu Yoshikawa
- Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Takugi Kan
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Kosuke Shirose
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Mariko Watanabe
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Mitsumasa Matsuda
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Kenji Ito
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | | |
Collapse
|
25
|
Effect of Continuous Feeding of Ayu-Narezushi on Lipid Metabolism in a Mouse Model of Metabolic Syndrome. ScientificWorldJournal 2021; 2021:1583154. [PMID: 34531707 PMCID: PMC8440109 DOI: 10.1155/2021/1583154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
Ayu-narezushi, a traditional Japanese fermented food, comprises abundant levels of lactic acid bacteria (LAB) and free amino acids. This study aimed to examine the potential beneficial effects of ayu-narezushi and investigated whether ayu-narezushi led to improvements in the Tsumura Suzuki obese diabetes (TSOD) mice model of spontaneous metabolic syndrome because useful LAB are known as probiotics that regulate intestinal function. In the present study, the increased body weight of the TSOD mice was attenuated in those fed the ayu-narezushi-comprised chow (ayu-narezushi group) compared with those fed the normal rodent chow (control group). Serum triglyceride and cholesterol levels were significantly lower in the Ayu-narezushi group than in the control group at 24 weeks of age. Furthermore, hepatic mRNA levels of carnitine-palmitoyl transferase 1 and acyl-CoA oxidase, which related to fatty acid oxidation, were significantly increased in the ayu-narezushi group than in the control group at 24 weeks of age. In conclusion, these results suggested that continuous feeding with ayu-narezushi improved obesity and dyslipidemia in the TSOD mice and that the activation of fatty acid oxidation in the liver might contribute to these improvements.
Collapse
|
26
|
Piubelli L, Murtas G, Rabattoni V, Pollegioni L. The Role of D-Amino Acids in Alzheimer's Disease. J Alzheimers Dis 2021; 80:475-492. [PMID: 33554911 DOI: 10.3233/jad-201217] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), the main cause of dementia worldwide, is characterized by a complex and multifactorial etiology. In large part, excitatory neurotransmission in the central nervous system is mediated by glutamate and its receptors are involved in synaptic plasticity. The N-methyl-D-aspartate (NMDA) receptors, which require the agonist glutamate and a coagonist such as glycine or the D-enantiomer of serine for activation, play a main role here. A second D-amino acid, D-aspartate, acts as agonist of NMDA receptors. D-amino acids, present in low amounts in nature and long considered to be of bacterial origin, have distinctive functions in mammals. In recent years, alterations in physiological levels of various D-amino acids have been linked to various pathological states, ranging from chronic kidney disease to neurological disorders. Actually, the level of NMDA receptor signaling must be balanced to promote neuronal survival and prevent neurodegeneration: this signaling in AD is affected mainly by glutamate availability and modulation of the receptor's functions. Here, we report the experimental findings linking D-serine and D-aspartate, through NMDA receptor modulation, to AD and cognitive functions. Interestingly, AD progression has been also associated with the enzymes related to D-amino acid metabolism as well as with glucose and serine metabolism. Furthermore, the D-serine and D-/total serine ratio in serum have been recently proposed as biomarkers of AD progression. A greater understanding of the role of D-amino acids in excitotoxicity related to the pathogenesis of AD will facilitate novel therapeutic treatments to cure the disease and improve life expectancy.
Collapse
Affiliation(s)
- Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
27
|
Holmes J, Witt CE, Keen D, Buchanan AM, Batey L, Hersey M, Hashemi P. Glutamate Electropolymerization on Carbon Increases Analytical Sensitivity to Dopamine and Serotonin: An Auspicious In Vivo Phenomenon in Mice? Anal Chem 2021; 93:10762-10771. [PMID: 34328714 DOI: 10.1021/acs.analchem.0c04316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon is the material of choice for electroanalysis of biological systems, being particularly applicable to neurotransmitter analysis as carbon fiber microelectrodes (CFMs). CFMs are most often applied to dopamine detection; however, the scope of CFM analysis has rapidly expanded over the last decade with our laboratory's focus being on improving serotonin detection at CFMs, which we achieved in the past via Nafion modification. We began this present work by seeking to optimize this modification to gain increased analytical sensitivity toward serotonin under the assumption that exposure of bare carbon to the in vivo environment rapidly deteriorates analytical performance. However, we were unable to experimentally verify this assumption and found that electrodes that had been exposed to the in vivo environment were more sensitive to evoked and ambient dopamine. We hypothesized that high in vivo concentrations of ambient extracellular glutamate could polymerize with a negative charge onto CFMs and facilitate response to dopamine. We verified this polymerization electrochemically and characterized the mechanisms of deposition with micro- and nano-imaging. Importantly, we identified that the application of 1.3 V as a positive upper waveform limit is a crucial factor for facilitating glutamate polymerization, thus improving analytical performance. Critically, information gained from these dopamine studies were extended to an in vivo environment where a 2-fold increase in sensitivity to evoked serotonin was achieved. Thus, we present here the novel finding that innate aspects of the in vivo environment are auspicious for detection of dopamine and serotonin at carbon fibers, offering a solution to our goal of an improved fast-scan cyclic voltammetry serotonin detection paradigm.
Collapse
Affiliation(s)
- Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Colby E Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Deanna Keen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, South Carolina, 29209 United States
| | - Lauren Batey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, South Carolina, 29209 United States
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| |
Collapse
|
28
|
Katane M, Matsuda S, Saitoh Y, Miyamoto T, Sekine M, Sakai-Kato K, Homma H. Glyoxylate reductase/hydroxypyruvate reductase regulates the free d-aspartate level in mammalian cells. J Cell Biochem 2021; 122:1639-1652. [PMID: 34289161 DOI: 10.1002/jcb.30110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022]
Abstract
Multiple d-amino acids are present in mammalian cells, and these compounds have distinctive physiological functions. Among the free d-amino acids identified in mammals, d-aspartate plays critical roles in the neuroendocrine and endocrine systems, as well as in the central nervous system. Mammalian cells have the molecular apparatus necessary to take up, degrade, synthesize, and release d-aspartate. In particular, d-aspartate is degraded by d-aspartate oxidase (DDO), a peroxisome-localized enzyme that catalyzes the oxidative deamination of d-aspartate to generate oxaloacetate, hydrogen peroxide, and ammonia. However, little is known about the molecular mechanisms underlying d-aspartate homeostasis in cells. In this study, we established a cell line that overexpresses cytoplasm-localized DDO; this cell line cannot survive in the presence of high concentrations of d-aspartate, presumably because high levels of toxic hydrogen peroxide are produced by metabolism of abundant d-aspartate by DDO in the cytoplasm, where hydrogen peroxide cannot be removed due to the absence of catalase. Next, we transfected these cells with a complementary DNA library derived from the human brain and screened for clones that affected d-aspartate metabolism and improved cell survival, even when the cells were challenged with high concentrations of d-aspartate. The screen identified a clone of glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Moreover, the GRHPR metabolites glyoxylate and hydroxypyruvate inhibited the enzymatic activity of DDO. Furthermore, we evaluated the effects of GRHPR and peroxisome-localized DDO on d- and l-aspartate levels in cultured mammalian cells. Our findings show that GRHPR contributes to the homeostasis of these amino acids in mammalian cells.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Satsuki Matsuda
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yasuaki Saitoh
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Tetsuya Miyamoto
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Masae Sekine
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kumiko Sakai-Kato
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Homma
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
29
|
Pollegioni L, Molla G, Sacchi S, Murtas G. Human D-aspartate Oxidase: A Key Player in D-aspartate Metabolism. Front Mol Biosci 2021; 8:689719. [PMID: 34250021 PMCID: PMC8260693 DOI: 10.3389/fmolb.2021.689719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
In recent years, the D-enantiomers of amino acids have been recognized as natural molecules present in all kingdoms, playing a variety of biological roles. In humans, d-serine and d-aspartate attracted attention for their presence in the central nervous system. Here, we focus on d-aspartate, which is involved in glutamatergic neurotransmission and the synthesis of various hormones. The biosynthesis of d-aspartate is still obscure, while its degradation is due to the peroxisomal flavin adenine dinucleotide (FAD)-containing enzyme d-aspartate oxidase. d-Aspartate emergence is strictly controlled: levels decrease in brain within the first days of life while increasing in endocrine glands postnatally and through adulthood. The human d-aspartate oxidase (hDASPO) belongs to the d-amino acid oxidase-like family: its tertiary structure closely resembles that of human d-amino acid oxidase (hDAAO), the enzyme that degrades neutral and basic d-amino acids. The structure-function relationships of the physiological isoform of hDASPO (named hDASPO_341) and the regulation of gene expression and distribution and properties of the longer isoform hDASPO_369 have all been recently elucidated. Beyond the substrate preference, hDASPO and hDAAO also differ in kinetic efficiency, FAD-binding affinity, pH profile, and oligomeric state. Such differences suggest that evolution diverged to create two different ways to modulate d-aspartate and d-serine levels in the human brain. Current knowledge about hDASPO is shedding light on the molecular mechanisms underlying the modulation of d-aspartate levels in human tissues and is pushing novel, targeted therapeutic strategies. Now, it has been proposed that dysfunction in NMDA receptor-mediated neurotransmission is caused by disrupted d-aspartate metabolism in the nervous system during the onset of various disorders (such as schizophrenia): the design of suitable hDASPO inhibitors aimed at increasing d-aspartate levels thus represents a novel and useful form of therapy.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
30
|
Kajitani K, Ishikawa T, Shibata K, Kouya T, Kera Y, Takahashi S. Development of an enzymatic screening method for d-aspartate-producing lactic acid bacteria. Enzyme Microb Technol 2021; 149:109835. [PMID: 34311880 DOI: 10.1016/j.enzmictec.2021.109835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
d-Aspartate (d-Asp) is an important intermediate for synthetic penicillin and an endogenous amino acid that plays important roles in the endocrine and nervous systems in animals including humans. Lactic acid bacteria (LABs) have been used as probiotics in humans, and some LAB species produce d-Asp as a component of cell wall peptidoglycan. LAB strains with greater d-Asp production would therefore be valuable for industrial d-Asp production. In this study, we developed an enzymatic screening method for d-Asp-producing LABs and isolated a strain with high d-Asp production. The d-Asp concentration in the culture medium was colorimetrically estimated up to 4 mM using d-aspartate oxidase (ChDDO) from the yeast Cryptococcus humicola strain UJ1 coupled with horseradish peroxidase, although a more accurate determination required correction because of interference by the medium component Mn2+. We isolated 628 LAB strains from various foods and screened them for d-Asp production using the enzymatic d-Asp assay method. The screening identified 13 d-Asp-producing LAB strains, which were suggested to belong to the genera Latilactobacillus, Levilactobacillus, Lactococcus, and Enterococcus. d-Asp production ability was likely to widely differ among the strains in the same genera and species. One strain, named strain WDN19, produced much higher d-Asp levels (1.84 mM), and it was closely related to Latilactobacillus curvatus. These results indicated that the enzymatic screening method was useful for identifying and isolating d-Asp-producing LABs rapidly and easily, and it might provide novel findings regarding d-Asp production by LABs.
Collapse
Affiliation(s)
- Kengo Kajitani
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Takumi Ishikawa
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Kimihiko Shibata
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima, 970-8034, Japan
| | - Tomoaki Kouya
- Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, Tochigi, 323-0806, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
31
|
Rabattoni V, Pollegioni L, Tedeschi G, Maffioli E, Sacchi S. Cellular studies of the two main isoforms of human d-aspartate oxidase. FEBS J 2021; 288:4939-4954. [PMID: 33650155 DOI: 10.1111/febs.15797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
Human d-aspartate oxidase (hDASPO) is a FAD-dependent enzyme responsible for the degradation of d-aspartate (d-Asp). In the mammalian central nervous system, d-Asp behaves as a classical neurotransmitter, it is thought to be involved in neural development, brain morphology and behavior, and appears to be involved in several pathological states, such as schizophrenia and Alzheimer's disease. Apparently, the human DDO gene produces alternative transcripts encoding for three putative hDASPO isoforms, constituted by 341 (the 'canonical' form), 369, and 282 amino acids. Despite the increasing interest in hDASPO and its physiological role, little is known about these different isoforms. Here, the additional N-terminal peptide present in the hDASPO_369 isoform only has been identified in hippocampus of Alzheimer's disease female patients, while peptides corresponding to the remaining part of the protein were present in samples from male and female healthy controls and Alzheimer's disease patients. The hDASPO_369 isoform was largely expressed in E. coli as insoluble protein, hampering with its biochemical characterization. Furthermore, we generated U87 human glioblastoma cell clones stably expressing hDASPO_341 and, for the first time, hDASPO_369 isoforms; the latter protein showed a lower expression compared with the canonical isoform. Both protein isoforms are active (showing similar kinetic properties), localize to the peroxisomes, are very stable (a half-life of approximately 100 h has been estimated), and are primarily degraded through the ubiquitin-proteasome system. These studies shed light on the properties of hDASPO isoforms with the final aim to clarify the mechanisms controlling brain levels of the neuromodulator d-Asp.
Collapse
Affiliation(s)
- Valentina Rabattoni
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | - Loredano Pollegioni
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | - Gabriella Tedeschi
- Università degli Studi di Milano, DIMEVET - Dipartimento di Medicina Veterinaria, Milano, Italy
| | - Elisa Maffioli
- Università degli Studi di Milano, DIMEVET - Dipartimento di Medicina Veterinaria, Milano, Italy
| | - Silvia Sacchi
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| |
Collapse
|
32
|
Usiello A, Di Fiore MM, De Rosa A, Falvo S, Errico F, Santillo A, Nuzzo T, Chieffi Baccari G. New Evidence on the Role of D-Aspartate Metabolism in Regulating Brain and Endocrine System Physiology: From Preclinical Observations to Clinical Applications. Int J Mol Sci 2020; 21:E8718. [PMID: 33218144 PMCID: PMC7698810 DOI: 10.3390/ijms21228718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
The endogenous amino acids serine and aspartate occur at high concentrations in free D-form in mammalian organs, including the central nervous system and endocrine glands. D-serine (D-Ser) is largely localized in the forebrain structures throughout pre and postnatal life. Pharmacologically, D-Ser plays a functional role by acting as an endogenous coagonist at N-methyl-D-aspartate receptors (NMDARs). Less is known about the role of free D-aspartate (D-Asp) in mammals. Notably, D-Asp has a specific temporal pattern of occurrence. In fact, free D-Asp is abundant during prenatal life and decreases greatly after birth in concomitance with the postnatal onset of D-Asp oxidase expression, which is the only enzyme known to control endogenous levels of this molecule. Conversely, in the endocrine system, D-Asp concentrations enhance after birth during its functional development, thereby suggesting an involvement of the amino acid in the regulation of hormone biosynthesis. The substantial binding affinity for the NMDAR glutamate site has led us to investigate the in vivo implications of D-Asp on NMDAR-mediated responses. Herein we review the physiological function of free D-Asp and of its metabolizing enzyme in regulating the functions of the brain and of the neuroendocrine system based on recent genetic and pharmacological human and animal studies.
Collapse
Affiliation(s)
- Alessandro Usiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Arianna De Rosa
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Francesco Errico
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100, 80055 Portici, Italy;
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Tommaso Nuzzo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| |
Collapse
|
33
|
Chen XY, Ha W, Jin XJ, Shi YP. PEGylated NALC-functionalized gold nanoparticles for colorimetric discrimination of chiral tyrosine. Analyst 2020; 145:7397-7405. [PMID: 32935670 DOI: 10.1039/d0an01460e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this work, acid and matrix-tolerant multifunctionalized gold nanoparticles (AuNPs) with an integrated chiral selector towards tyrosine (Tyr) and polyethylenglycol (PEG) chains were developed for visual chiral discrimination of Tyr in biological samples under acid conditions. In brief, AuNPs multifunctionalized with N-acetyl-l-cysteine (NALC) and PEG (PEG/NALC-AuNPs) were prepared via a simple strategy. In the presence of l-Tyr, the color of PEG/NALC-AuNP solution changed from red to gray, while no obvious color change was observed with the introduction of d-Tyr, which indicated that the introduction of PEG onto the surface of AuNPs has no effect on the chiral recognition between l-Tyr and NALC. A computer-aided molecular model was used to clarify the chiral recognition mechanism between NALC and Tyr enantiomers and to further guide the optimization of sensitivity. The resultant PEG/NALC-AuNP sensor presented a significantly improved stability under acid and alkali conditions compared with conventional NALC-AuNPs, resulting in a wider dynamic range (500 nM-100 μM) and a 50 times reduced detection limit by simply adjusting the pH of the sensor system under acid conditions (pH 2-2.5). More importantly, the PEG/NALC-AuNPs can realize the visual chiral discrimination of Tyr enantiomers in biological samples due to their significantly improved long-term stability and reduced interaction towards non-target species.
Collapse
Affiliation(s)
- Xin-Yue Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | | | | | | |
Collapse
|
34
|
Identification of an l-serine/l-threonine dehydratase with glutamate racemase activity in mammals. Biochem J 2020; 477:4221-4241. [DOI: 10.1042/bcj20200721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 02/02/2023]
Abstract
Recent investigations have shown that multiple d-amino acids are present in mammals and these compounds have distinctive physiological functions. Free d-glutamate is present in various mammalian tissues and cells and in particular, it is presumably correlated with cardiac function, and much interest is growing in its unique metabolic pathways. Recently, we first identified d-glutamate cyclase as its degradative enzyme in mammals, whereas its biosynthetic pathway in mammals is unclear. Glutamate racemase is a most probable candidate, which catalyzes interconversion between d-glutamate and l-glutamate. Here, we identified the cDNA encoding l-serine dehydratase-like (SDHL) as the first mammalian clone with glutamate racemase activity. This rat SDHL had been deposited in mammalian databases as a protein of unknown function and its amino acid sequence shares ∼60% identity with that of l-serine dehydratase. Rat SDHL was expressed in Escherichia coli, and the enzymatic properties of the recombinant were characterized. The results indicated that rat SDHL is a multifunctional enzyme with glutamate racemase activity in addition to l-serine/l-threonine dehydratase activity. This clone is hence abbreviated as STDHgr. Further experiments using cultured mammalian cells confirmed that d-glutamate was synthesized and l-serine and l-threonine were decomposed. It was also found that SDHL (STDHgr) contributes to the homeostasis of several other amino acids.
Collapse
|
35
|
Lee CJ, Qiu TA, Sweedler JV. d-Alanine: Distribution, origin, physiological relevance, and implications in disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140482. [DOI: 10.1016/j.bbapap.2020.140482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
|
36
|
Shafiee A, Ahmadi H, Taheri B, Hosseinzadeh S, Fatahi Y, Soleimani M, Atyabi F, Dinarvand R. Appropriate Scaffold Selection for CNS Tissue Engineering. Avicenna J Med Biotechnol 2020; 12:203-220. [PMID: 33014312 PMCID: PMC7502166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/02/2020] [Indexed: 11/06/2022] Open
Abstract
Cellular transplantation, due to the low regenerative capacity of the Central Nervous System (CNS), is one of the promising strategies in the treatment of neurodegenerative diseases. The design and application of scaffolds mimicking the CNS extracellular matrix features (biochemical, bioelectrical, and biomechanical), which affect the cellular fate, are important to achieve proper efficiency in cell survival, proliferation, and differentiation as well as integration with the surrounding tissue. Different studies on natural materials demonstrated that hydrogels made from natural materials mimic the extracellular matrix and supply microenvironment for cell adhesion and proliferation. The design and development of cellular microstructures suitable for neural tissue engineering purposes require a comprehensive knowledge of neuroscience, cell biology, nanotechnology, polymers, mechanobiology, and biochemistry. In this review, an attempt was made to investigate this multidisciplinary field and its multifactorial effects on the CNS microenvironment. Many strategies have been used to simulate extrinsic cues, which can improve cellular behavior toward neural lineage. In this study, parallel and align, soft and injectable, conductive, and bioprinting scaffolds were reviewed which have indicated some successes in the field. Among different systems, three-Dimensional (3D) bioprinting is a powerful, highly modifiable, and highly precise strategy, which has a high architectural similarity to tissue structure and is able to construct controllable tissue models. 3D bioprinting scaffolds induce cell attachment, proliferation, and differentiation and promote the diffusion of nutrients. This method provides exceptional versatility in cell positioning that is very suitable for the complex Extracellular Matrix (ECM) of the nervous system.
Collapse
Affiliation(s)
- Akram Shafiee
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Ahmadi
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Behnaz Taheri
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Simzar Hosseinzadeh
- Faculty of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medicine, Tarbiat Modaress University, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Chieffi Baccari G, Falvo S, Santillo A, Di Giacomo Russo F, Di Fiore MM. D-Amino acids in mammalian endocrine tissues. Amino Acids 2020; 52:1263-1273. [PMID: 32930873 DOI: 10.1007/s00726-020-02892-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/07/2020] [Indexed: 01/05/2023]
Abstract
D-Aspartate, D-serine and D-alanine are a regular occurrence in mammalian endocrine tissues, though in amounts varying with the type of gland. The pituitary gland, pineal gland, thyroid, adrenal glands and testis contain relatively large amounts of D-aspartate in all species examined. D-alanine is relatively abundant in the pituitary gland and pancreas. High levels of D-serine characterize the hypothalamus. D-leucine, D-proline and D-glutamate are generally low. The current knowledge of physiological roles of D-amino acids in endocrine tissues is far from exhaustive, yet the topic is attracting increasing interest because of its potential in pharmacological application. D-aspartate is known to act at all levels of the hypothalamus-pituitary-testis axis, playing a key role in reproductive biology in several vertebrate classes. An involvement of D-amino acids in the endocrine function of the pancreas is emerging. D-Aspartate has been immunolocalized in insulin-containing secretory granules in INS-1 E clonal β cells and is co-secreted with insulin by exocytosis. Specific immunolocalization of D-alanine in pituitary ACTH-secreting cells and pancreatic β-cells suggests that this amino acid participates in blood glucose regulation in mammals. By modulating insulin secretion, D-serine probably participates in the control of systemic glucose metabolism by modulating insulin secretion. We anticipate that future investigation will significantly increase the functional repertoire of D-amino acids in homeostatic control.
Collapse
Affiliation(s)
- Gabriella Chieffi Baccari
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Sara Falvo
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Alessandra Santillo
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Federica Di Giacomo Russo
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy.
| |
Collapse
|
38
|
Katane M, Motoda R, Ariyoshi M, Tateishi S, Nakayama K, Saitoh Y, Miyamoto T, Sekine M, Mita M, Hamase K, Matoba S, Sakai-Kato K, Homma H. A colorimetric assay method for measuring d-glutamate cyclase activity. Anal Biochem 2020; 605:113838. [PMID: 32702438 DOI: 10.1016/j.ab.2020.113838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022]
Abstract
In mammals, metabolism of free d-glutamate is regulated by d-glutamate cyclase (DGLUCY), which reversibly converts d-glutamate to 5-oxo-d-proline and H2O. Metabolism of these d-amino acids by DGLUCY is thought to regulate cardiac function. In this study, we established a simple, accurate, and sensitive colorimetric assay method for measuring DGLUCY activity. To this end, we optimized experimental procedures for derivatizing 5-oxo-d-proline with 2-nitrophenylhydrazine hydrochloride. 5-Oxo-d-proline was derivatized with 2-nitrophenylhydrazine hydrochloride in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide as a catalyst to generate the acid hydrazides, whose levels were then determined using a colorimetric method. Under optimized conditions, we examined the sensitivity and accuracy of the colorimetric method and compared our technique with other methods by high-performance liquid chromatography with ultraviolet-visible or fluorescence detection. Moreover, we assessed the suitability of this colorimetric method for measuring DGLUCY activity in biological samples. Our colorimetric method could determine DGLUCY activity with adequate validity and reliability. This method will help to elucidate the relationship among DGLUCY activity, the physiological and pathological roles of d-glutamate and 5-oxo-d-proline, and cardiac function.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Risa Motoda
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Makoto Ariyoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuki Nakayama
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yasuaki Saitoh
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masashi Mita
- Shiseido Co., Ltd, 1-1-16 Higashi-shimbashi, Minato-ku, Tokyo, 105-0021, Japan
| | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kumiko Sakai-Kato
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Sciences, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
39
|
Dalangin R, Kim A, Campbell RE. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int J Mol Sci 2020; 21:E6197. [PMID: 32867295 PMCID: PMC7503967 DOI: 10.3390/ijms21176197] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Neurotransmission between neurons, which can occur over the span of a few milliseconds, relies on the controlled release of small molecule neurotransmitters, many of which are amino acids. Fluorescence imaging provides the necessary speed to follow these events and has emerged as a powerful technique for investigating neurotransmission. In this review, we highlight some of the roles of the 20 canonical amino acids, GABA and β-alanine in neurotransmission. We also discuss available fluorescence-based probes for amino acids that have been shown to be compatible for live cell imaging, namely those based on synthetic dyes, nanostructures (quantum dots and nanotubes), and genetically encoded components. We aim to provide tool developers with information that may guide future engineering efforts and tool users with information regarding existing indicators to facilitate studies of amino acid dynamics.
Collapse
Affiliation(s)
- Rochelin Dalangin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Anna Kim
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Carenzi G, Sacchi S, Abbondi M, Pollegioni L. Direct chromatographic methods for enantioresolution of amino acids: recent developments. Amino Acids 2020; 52:849-862. [DOI: 10.1007/s00726-020-02873-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
|
41
|
Rosini E, D’Antona P, Pollegioni L. Biosensors for D-Amino Acids: Detection Methods and Applications. Int J Mol Sci 2020; 21:E4574. [PMID: 32605078 PMCID: PMC7369756 DOI: 10.3390/ijms21134574] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
D-enantiomers of amino acids (D-AAs) are only present in low amounts in nature, frequently at trace levels, and for this reason, their biological function was undervalued for a long time. In the past 25 years, the improvements in analytical methods, such as gas chromatography, HPLC, and capillary electrophoresis, allowed to detect D-AAs in foodstuffs and biological samples and to attribute them specific biological functions in mammals. These methods are time-consuming, expensive, and not suitable for online application; however, life science investigations and industrial applications require rapid and selective determination of D-AAs, as only biosensors can offer. In the present review, we provide a status update concerning biosensors for detecting and quantifying D-AAs and their applications for safety and quality of foods, human health, and neurological research. The review reports the main challenges in the field, such as selectivity, in order to distinguish the different D-AAs present in a solution, the simultaneous assay of both L- and D-AAs, the production of implantable devices, and surface-scanning biosensors. These innovative tools will push future research aimed at investigating the neurological role of D-AAs, a vibrant field that is growing at an accelerating pace.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (P.D.); (L.P.)
| | | | | |
Collapse
|
42
|
Puggioni V, Savinelli A, Miceli M, Molla G, Pollegioni L, Sacchi S. Biochemical characterization of mouse d-aspartate oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140472. [PMID: 32553892 DOI: 10.1016/j.bbapap.2020.140472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
D-amino acids research field has recently gained an increased interest since these atypical molecules have been discovered to play a plethora of different roles. In the mammalian central nervous system, d-aspartate (D-Asp) is critically involved in the regulation of glutamatergic neurotransmission by acting as an agonist of NMDA receptor. Accordingly, alterations in its metabolism have been related to different pathologies. D-Asp shows a peculiar temporal pattern of emergence during ontogenesis and soon after birth its brain levels are strictly regulated by the catabolic enzyme d-aspartate oxidase (DASPO), a FAD-dependent oxidase. Rodents have been widely used as in vivo models for deciphering molecular mechanisms and for testing novel therapeutic targets and drugs, but human targets can significantly differ. Based on these considerations, here we investigated the structural and functional properties of the mouse DASPO, in particular kinetic properties, ligand and flavin binding, oligomerization state and protein stability. We compared the obtained findings with those of the human enzyme (80% sequence identity) highlighting a different oligomeric state and a lower activity for the mouse DASPO, which apoprotein species exists in solution in two forms differing in FAD affinity. The features that distinguish mouse and human DASPO suggest that this flavoenzyme might control in a distinct way the brain D-Asp levels in different organisms.
Collapse
Affiliation(s)
- Vincenzo Puggioni
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Antonio Savinelli
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Matteo Miceli
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Gianluca Molla
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Loredano Pollegioni
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; International Research Center on D-amino acids DAAIR, via Lepetit 34, 21040, Gerenzano (VA), Italy
| | - Silvia Sacchi
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; International Research Center on D-amino acids DAAIR, via Lepetit 34, 21040, Gerenzano (VA), Italy.
| |
Collapse
|
43
|
Moroz LL, Sohn D, Romanova DY, Kohn AB. Microchemical identification of enantiomers in early-branching animals: Lineage-specific diversification in the usage of D-glutamate and D-aspartate. Biochem Biophys Res Commun 2020; 527:947-952. [PMID: 32439167 DOI: 10.1016/j.bbrc.2020.04.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/26/2020] [Indexed: 12/27/2022]
Abstract
D-amino acids are unique and essential signaling molecules in neural, hormonal, and immune systems. However, the presence of D-amino acids and their recruitment in early animals is mostly unknown due to limited information about prebilaterian metazoans. Here, we performed the comparative survey of L-/D-aspartate and L-/D-glutamate in representatives of four phyla of early-branching Metazoa: cnidarians (Aglantha); placozoans (Trichoplax), sponges (Sycon) and ctenophores (Pleurobrachia, Mnemiopsis, Bolinopsis, and Beroe), which are descendants of ancestral animal lineages distinct from Bilateria. Specifically, we used high-performance capillary electrophoresis for microchemical assays and quantification of the enantiomers. L-glutamate and L-aspartate were abundant analytes in all species studied. However, we showed that the placozoans, cnidarians, and sponges had high micromolar concentrations of D-aspartate, whereas D-glutamate was not detectable in our assays. In contrast, we found that in ctenophores, D-glutamate was the dominant enantiomer with no or trace amounts of D-aspartate. This situation illuminates prominent lineage-specific diversifications in the recruitment of D-amino acids and suggests distinct signaling functions of these molecules early in the animal evolution. We also hypothesize that a deep ancestry of such recruitment events might provide some constraints underlying the evolution of neural and other signaling systems in Metazoa.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA; Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Dosung Sohn
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Andrea B Kohn
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| |
Collapse
|
44
|
Biochemical characterization of d-aspartate oxidase from Caenorhabditis elegans: its potential use in the determination of free d-glutamate in biological samples. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140442. [PMID: 32376478 DOI: 10.1016/j.bbapap.2020.140442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
d-Aspartate oxidase (DDO) is a flavin adenine dinucleotide (FAD)-containing flavoprotein that stereospecifically acts on acidic d-amino acids (i.e., free d-aspartate and d-glutamate). Mammalian DDO, which exhibits higher activity toward d-aspartate than d-glutamate, is presumed to regulate levels of d-aspartate in the body and is not thought to degrade d-glutamate in vivo. By contrast, three DDO isoforms are present in the nematode Caenorhabditis elegans, DDO-1, DDO-2, and DDO-3, all of which exhibit substantial activity toward d-glutamate as well as d-aspartate. In this study, we optimized the Escherichia coli culture conditions for production of recombinant C. elegans DDO-1, purified the protein, and showed that it is a flavoprotein with a noncovalently but tightly attached FAD. Furthermore, C. elegans DDO-1, but not mammalian (rat) DDO, efficiently and selectively degraded d-glutamate in addition to d-aspartate, even in the presence of various other amino acids. Thus, C. elegans DDO-1 might be a useful tool for determining these acidic d-amino acids in biological samples.
Collapse
|
45
|
D-Aspartate Upregulates DAAM1 Protein Levels in the Rat Testis and Induces Its Localization in Spermatogonia Nucleus. Biomolecules 2020; 10:biom10050677. [PMID: 32353957 PMCID: PMC7277804 DOI: 10.3390/biom10050677] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Cell differentiation during spermatogenesis requires a proper actin dynamic, regulated by several proteins, including formins. Disheveled-Associated-Activator of Morphogenesis1 (DAAM1) belongs to the formins and promotes actin polymerization. Our results showed that oral D-Aspartate (D-Asp) administration, an excitatory amino acid, increased DAAM1 protein levels in germ cells cytoplasm of rat testis. Interestingly, after the treatment, DAAM1 also localized in rat spermatogonia (SPG) and mouse GC-1 cells nuclei. We provided bioinformatic evidence that DAAM1 sequence has two predicted NLS, supporting its nuclear localization. The data also suggested a role of D-Asp in promoting DAAM1 shuttling to the nuclear compartment of those proliferative cells. In addition, the proliferative action induced by D-Asp is confirmed by the increased levels of PCNA, a protein expressed in the nucleus of cells in the S phase and p-H3, a histone crucial for chromatin condensation during mitosis and meiosis. In conclusion, we demonstrated, for the first time, an increased DAAM1 protein levels following D-Asp treatment in rat testis and also its localization in the nucleus of rat SPG and in mouse GC-1 cells. Our results suggest an assumed role for this formin as a regulator of actin dynamics in both cytoplasm and nuclei of the germ cells.
Collapse
|
46
|
Hernández B, Pflüger F, Ghomi M. Aspartate: An interesting model for analyzing dipole‐ion and ion pair interactions through its oppositely charged amine and acid groups. J Comput Chem 2020; 41:1402-1410. [DOI: 10.1002/jcc.26184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Belén Hernández
- Laboratoire Matrice Extracellulaire et Dynamique Cellulaire (MEDyC)UMR 7369, Université de Reims, Faculté des Sciences Moulin de la Housse, Reims Cedex 2 France
- Université Sorbonne Paris Nord, UFR Santé‐Médecine‐Biologie HumaineGroupe de Biophysique Moléculaire Bobigny Cedex France
| | - Fernando Pflüger
- Université Sorbonne Paris Nord, UFR Santé‐Médecine‐Biologie HumaineGroupe de Biophysique Moléculaire Bobigny Cedex France
| | - Mahmoud Ghomi
- Laboratoire Matrice Extracellulaire et Dynamique Cellulaire (MEDyC)UMR 7369, Université de Reims, Faculté des Sciences Moulin de la Housse, Reims Cedex 2 France
- Université Sorbonne Paris Nord, UFR Santé‐Médecine‐Biologie HumaineGroupe de Biophysique Moléculaire Bobigny Cedex France
| |
Collapse
|
47
|
Yu Y, Yang J, Zheng LY, Sheng Q, Li CY, Wang M, Zhang XY, McMinn A, Zhang YZ, Song XY, Chen XL. Diversity of D-Amino Acid Utilizing Bacteria From Kongsfjorden, Arctic and the Metabolic Pathways for Seven D-Amino Acids. Front Microbiol 2020; 10:2983. [PMID: 31998270 PMCID: PMC6965332 DOI: 10.3389/fmicb.2019.02983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
D-amino acids (DAAs) are an important component of the refractory dissolved organic matter pool in the ocean. Microbes play a vital role in promoting the recycling of DAAs in the ocean. However, the diversity of marine DAA-utilizing bacteria and how they metabolize DAAs are seldom studied. Here, by enrichment culture with DAAs as the sole nitrogen source, bacteria of 12 families from three phyla were recovered from surface seawater and sediment from Kongsfjorden, Arctic, and seven DAA-utilizing bacterial strains were isolated. These strains have different DAA-utilizing abilities. Of the seven DAAs used, Halomonas titanicae SM1922 and Pseudoalteromonas neustonica SM1927 were able to utilize seven and five of them, respectively, while the other strains were able to utilize only one or two. Based on genomic, transcriptional and biochemical analyses, the key genes involved in DAA metabolism in each strain were identified and the metabolic pathways for the seven DAAs in these marine bacteria were identified. Conversion of DAAs into α-keto acids is generally the main pathway in marine DAA-utilizing bacteria, which is performed by several key enzymes, including DAA oxidoreductases/dehydrogenases, D-serine ammonia-lyases, D-serine ammonia-lyase DSD1s and DAA transaminases. In addition, conversion of DAAs into LAAs is another pathway, which is performed by amino acid racemases. Among the identified key enzymes, D-serine ammonia-lyase DSD1 and Asp racemase are first found to be employed by bacteria for DAA utilization. These results shed light on marine DAA-utilizing bacteria and the involved DAA metabolism pathways, offering a better understanding of the DAA recycling in the ocean.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jie Yang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Li-Yuan Zheng
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Qi Sheng
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
48
|
Shibata K, Sugaya N, Kuboki Y, Matsuda H, Abe K, Takahashi S, Kera Y. Aspartate racemase and d-aspartate in starfish; possible involvement in testicular maturation. Biosci Biotechnol Biochem 2020; 84:95-102. [DOI: 10.1080/09168451.2019.1660614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
d-Aspartate, aspartate racemase activity, and d-aspartate oxidase activity were detected in tissues from several types of starfish. Aspartate racemase activity in male testes of Patiria pectinifera was significantly elevated in the summer months of the breeding season compared with spring months. We also compared aspartate racemase activity with the gonad index and found that activity in individuals with a gonad index ≥6% was four-fold higher than that of individuals with a gonad index <6%. The ratio of the D-form of aspartate to total aspartate was approximately 25% in testes with a gonad index <6% and this increased to approximately 40% in testes with a gonad index ≥6%. However, such changes were not observed in female ovaries. Administration of d-aspartate into male starfish caused testicular growth. These results indicate the possible involvement of aspartate racemase and d-aspartate in testicular maturation in echinoderm starfish.
Collapse
Affiliation(s)
- Kimihiko Shibata
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Noriko Sugaya
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Yuko Kuboki
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Hiroko Matsuda
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
49
|
Molla G, Chaves‐Sanjuan A, Savinelli A, Nardini M, Pollegioni L. Structure and kinetic properties of humand‐aspartate oxidase, the enzyme‐controllingd‐aspartate levels in brain. FASEB J 2019; 34:1182-1197. [DOI: 10.1096/fj.201901703r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Gianluca Molla
- Dipartimento di Biotecnologie e Scienze della Vita Università degli studi dell’Insubria Varese Italy
| | | | - Antonio Savinelli
- Dipartimento di Biotecnologie e Scienze della Vita Università degli studi dell’Insubria Varese Italy
| | - Marco Nardini
- Dipartimento di Bioscienze Università degli studi di Milano Milano Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita Università degli studi dell’Insubria Varese Italy
| |
Collapse
|
50
|
Bastings JJ, van Eijk HM, Olde Damink SW, Rensen SS. d-amino Acids in Health and Disease: A Focus on Cancer. Nutrients 2019; 11:nu11092205. [PMID: 31547425 PMCID: PMC6770864 DOI: 10.3390/nu11092205] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
d-amino acids, the enantiomeric counterparts of l-amino acids, were long considered to be non-functional or not even present in living organisms. Nowadays, d-amino acids are acknowledged to play important roles in numerous physiological processes in the human body. The most commonly studied link between d-amino acids and human physiology concerns the contribution of d-serine and d-aspartate to neurotransmission. These d-amino acids and several others have also been implicated in regulating innate immunity and gut barrier function. Importantly, the presence of certain d-amino acids in the human body has been linked to several diseases including schizophrenia, amyotrophic lateral sclerosis, and age-related disorders such as cataract and atherosclerosis. Furthermore, increasing evidence supports a role for d-amino acids in the development, pathophysiology, and treatment of cancer. In this review, we aim to provide an overview of the various sources of d-amino acids, their metabolism, as well as their contribution to physiological processes and diseases in man, with a focus on cancer.
Collapse
Affiliation(s)
- Jacco J.A.J. Bastings
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Hans M. van Eijk
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
| | - Steven W. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Correspondence:
| |
Collapse
|