Synthesis of Reusable Silica Nanosphere-Supported Pt(IV) Complex for Formation of Disulfide Bonds in Peptides.
Molecules 2017;
22:molecules22020338. [PMID:
28241453 PMCID:
PMC6155793 DOI:
10.3390/molecules22020338]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 11/17/2022] Open
Abstract
Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV) complex (SiO₂@TPEA@Pt(IV)); TPEA: N-[3-(trimethoxysilyl)propyl]ethylenediamine) was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM) and chemical mapping results for the Pt(II) intermediates and for SiO₂@TPEA@Pt(IV) show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS). The Pt(IV) loaded on SiO₂@TPEA@Pt(IV) was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO₂@TPEA@Pt(IV) was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC). In addition, peptide 1 (Ac-CPFC-NH₂) was utilized to study the reusability of SiO₂@TPEA@Pt(IV). No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO₂@TPEA@Pt(IV) after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.
Collapse