1
|
Tain YL, Hou CY, Chang-Chien GP, Lin S, Hsu CN. Protective Role of Taurine on Rat Offspring Hypertension in the Setting of Maternal Chronic Kidney Disease. Antioxidants (Basel) 2023; 12:2059. [PMID: 38136178 PMCID: PMC10740461 DOI: 10.3390/antiox12122059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Taurine is a natural antioxidant with antihypertensive properties. Maternal chronic kidney disease (CKD) has an impact on renal programming and increases the risk of offspring hypertension in later life. The underlying mechanisms cover oxidative stress, a dysregulated hydrogen sulfide (H2S) system, dysbiotic gut microbiota, and inappropriate activation of the renin-angiotensin-aldosterone system (RAAS). We investigated whether perinatal taurine administration enables us to prevent high blood pressure (BP) in offspring complicated by maternal CKD. Before mating, CKD was induced through feeding chow containing 0.5% adenine for 3 weeks. Taurine was administered (3% in drinking water) during gestation and lactation. Four groups of male offspring were used (n = 8/group): controls, CKD, taurine-treated control rats, and taurine-treated rats with CKD. Taurine treatment significantly reduced BP in male offspring born to mothers with CKD. The beneficial effects of perinatal taurine treatment were attributed to an augmented H2S pathway, rebalance of aberrant RAAS activation, and gut microbiota alterations. In summary, our results not only deepen our knowledge of the mechanisms underlying maternal CKD-induced offspring hypertension but also afford us the impetus to consider taurine-based intervention as a promising preventive approach for future clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
San J, Hu J, Pang H, Zuo W, Su N, Guo Z, Wu G, Yang J. Taurine Protects against the Fatty Liver Hemorrhagic Syndrome in Laying Hens through the Regulation of Mitochondrial Homeostasis. Int J Mol Sci 2023; 24:10360. [PMID: 37373507 DOI: 10.3390/ijms241210360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease caused by fat deposition in the liver of humans and mammals, while fatty liver hemorrhagic syndrome (FLHS) is a fatty liver disease in laying hens which can increase the mortality and cause severe economic losses to the laying industry. Increasing evidence has shown a close relationship between the occurrence of fatty liver disease and the disruption of mitochondrial homeostasis. Studies have proven that taurine can regulate hepatic fat metabolism, reduce hepatic fatty deposition, inhibit oxidative stress, and alleviate mitochondrial dysfunction. However, the mechanisms by which taurine regulates mitochondrial homeostasis in hepatocytes need to be further studied. In this study, we determined the effects and mechanisms of taurine on high-energy low-protein diet-induced FLHS in laying hens and in cultured hepatocytes in free fatty acid (FFA)-induced steatosis. The liver function, lipid metabolism, antioxidant capacity, mitochondrial function, mitochondrial dynamics, autophagy, and biosynthesis were detected. The results showed impaired liver structure and function, mitochondrial damage and dysfunction, lipid accumulation, and imbalance between mitochondrial fusion and fission, mitochondrial autophagy, and biosynthesis in both FLHS hens and steatosis hepatocytes. Taurine administration can significantly inhibit the occurrence of FLHS, protect mitochondria in hepatocytes from disease induced by lipid accumulation and FFA, up-regulate the expression levels of Mfn1, Mfn2, Opa1, LC3I, LC3II, PINK1, PGC-1α, Nrf1, Nrf2, and Tfam, and down-regulate the expression levels of Fis1, Drp1, and p62. In conclusion, taurine can protect laying hens from FLHS through the regulation of mitochondrial homeostasis, including the regulation of mitochondrial dynamics, autophagy, and biosynthesis.
Collapse
Affiliation(s)
- Jishuang San
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiping Pang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenjun Zuo
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Na Su
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zimeng Guo
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
3
|
Rafiee Z, García-Serrano AM, Duarte JMN. Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes. Nutrients 2022; 14:1292. [PMID: 35334949 PMCID: PMC8952284 DOI: 10.3390/nu14061292] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity, type 2 diabetes, and their associated comorbidities impact brain metabolism and function and constitute risk factors for cognitive impairment. Alterations to taurine homeostasis can impact a number of biological processes, such as osmolarity control, calcium homeostasis, and inhibitory neurotransmission, and have been reported in both metabolic and neurodegenerative disorders. Models of neurodegenerative disorders show reduced brain taurine concentrations. On the other hand, models of insulin-dependent diabetes, insulin resistance, and diet-induced obesity display taurine accumulation in the hippocampus. Given the possible cytoprotective actions of taurine, such cerebral accumulation of taurine might constitute a compensatory mechanism that attempts to prevent neurodegeneration. The present article provides an overview of brain taurine homeostasis and reviews the mechanisms by which taurine can afford neuroprotection in individuals with obesity and diabetes. We conclude that further research is needed for understanding taurine homeostasis in metabolic disorders with an impact on brain function.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| | - Alba M. García-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| |
Collapse
|
4
|
Blood pressure and urine metabolite changes in spontaneously hypertensive rats treated with leaf extract of Ficus deltoidea var angustifolia. J Pharm Biomed Anal 2022; 210:114579. [PMID: 35016031 DOI: 10.1016/j.jpba.2021.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 11/21/2022]
Abstract
Ficus deltoidea var angustifolia (FD-A) reduces blood pressure in spontaneously hypertensive rats (SHR) but the mechanism remains unknown. Changes in urine metabolites following FD-A treatment in SHR were, therefore, examined to identify the mechanism of its antihypertensive action. Male SHR were given either FD-A (1000 mg kg-1 day-1) or losartan (10 mg kg-1 day-1) or 0.5 mL of ethanolic-water (control) daily for 4 weeks. Systolic blood pressure (SBP) was measured every week and urine spectra data acquisition, on urine collected after four weeks of treatment, were compared using multivariate data analysis. SBP in FD-A and losartan treated rats was significantly lower than that in the controls after four weeks of treatment. Urine spectra analysis revealed 24 potential biomarkers with variable importance projections (VIP) above 0.5. These included creatine, hippurate, benzoate, trimethylamine N-oxide, taurine, dimethylamine, homocysteine, allantoin, methylamine, n-phenylacetylglycine, guanidinoacetate, creatinine, lactate, glucarate, kynurenine, ethanolamine, betaine, 3-hydroxybutyrate, glycine, lysine, glutamine, 2-hydroxyphenylacetate, 3-indoxylsulfate and sarcosine. From the profile of these metabolites, it seems that FD-A affects urinary levels of metabolites like taurine, hypotaurine, glycine, serine, threonine, alanine, aspartate and glutamine. Alterations in these and the pathways involved in their metabolism might underlie the molecular mechanism of its antihypertensive action.
Collapse
|
5
|
Thaeomor A, Tangnoi C, Teangphuck P, Seanthaweesuk S, Somparn N, Naowaboot J, Roysommuti S. Perinatal Taurine Supplementation Preserves the Benefits of Dynamic Exercise Training on Cardiovascular and Metabolic Functions and Prevents Organ Damage in Adult Male Exercised Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:185-194. [DOI: 10.1007/978-3-030-93337-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8850080. [PMID: 34095293 PMCID: PMC8140835 DOI: 10.1155/2021/8850080] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Infant formulas are an alternative to replace or supplement human milk when breastfeeding is not possible. The knowledge of human milk's bioactive compounds and their beneficial effects has attracted the interest of researchers in the field of infant nutrition, as well as researchers of technology and food sciences that seek to improve the nutritional characteristics of infant formulas. Several scientific studies evaluate the optimization of infant formula composition. The bioactive compound inclusion has been used to upgrade the quality and nutrition of infant formulas. In this context, the purpose of this systematic literature review is to assess the scientific evidence of bioactive compounds present in infant formulas (α-lactalbumin, lactoferrin, taurine, milk fat globule membrane, folates, polyamines, long-chain polyunsaturated fatty acids, prebiotics, and probiotics) and their effects on infant nutrition and health. Through previously determined criteria, studies published in the last fifteen years from five different databases were included to identify the advances in the optimization of infant formula composition. Over the last few years, there has been optimization of the infant formula composition, not only to increase the similarities in their content of macro and micronutrients but also to include novel bioactive ingredients with potential health benefits for infants. Although the infant food industry has advanced in the last years, there is no consensus on whether novel bioactive ingredients added to infant formulas have the same functional effects as the compounds found in human milk. Thus, further studies about the impact of bioactive compounds in infant nutrition are fundamental to infant health.
Collapse
|
7
|
Wątły J, Miller A, Kozłowski H, Rowińska-Żyrek M. Peptidomimetics - An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules. J Inorg Biochem 2021; 217:111386. [PMID: 33610030 DOI: 10.1016/j.jinorgbio.2021.111386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
The involvement of metal ions in interactions with therapeutic peptides is inevitable. They are one of the factors able to fine-tune the biological properties of antimicrobial peptides, a promising group of drugs with one large drawback - a problematic metabolic stability. Appropriately chosen, proteolytically stable peptidomimetics seem to be a reasonable solution of the problem, and the use of D-, β-, γ-amino acids, unnatural amino acids, azapeptides, peptoids, cyclopeptides and dehydropeptides is an infinite reservoir of metal binding motifs in metabolically stable, well-designed, biologically active molecules. Below, their specific structural features, metal-chelating abilities and antimicrobial potential are discussed.
Collapse
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland.
| | - Adriana Miller
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland; Department of Health Sciences, University of Opole, Katowicka 68, Opole 45-060, Poland
| | | |
Collapse
|
8
|
Long-term effects of a maternal high-fat: high-fructose diet on offspring growth and metabolism and impact of maternal taurine supplementation. J Dev Orig Health Dis 2019; 11:419-426. [PMID: 31735181 DOI: 10.1017/s2040174419000709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Maternal obesity is associated with obesity and metabolic disorders in offspring. However, there remains a paucity of data on strategies to reverse the effects of maternal obesity on maternal and offspring health. With maternal undernutrition, taurine supplementation improves outcomes in offspring mediated in part via improved glucose-insulin homeostasis. The efficacy of taurine supplementation in the setting of maternal obesity on health and well-being of offspring is unknown. We examined the effects of taurine supplementation on outcomes related to growth and metabolism in offspring in a rat model of maternal obesity. DESIGN Wistar rats were randomised to: 1) control diet during pregnancy and lactation (CON); 2) CON with 1.5% taurine in drinking water (CT); 3) maternal obesogenic diet (MO); or 4) MO with taurine (MOT). Offspring were weaned onto the control diet for the remainder of the study. RESULTS At day 150, offspring body weights and adipose tissue weights were increased in MO groups compared to CON. Adipose tissue weights were reduced in MOT versus MO males but not females. Plasma fasting leptin and insulin were increased in MO offspring groups but were not altered by maternal taurine supplementation. Plasma homocysteine concentrations were reduced in all maternal taurine-supplemented offspring groups. There were significant interactions across maternal diet, taurine supplementation and sex for response to an oral glucose tolerance test , a high-fat dietary preference test and pubertal onset in offspring. CONCLUSIONS These results demonstrate that maternal taurine supplementation can partially ameliorate adverse developmental programming effects in offspring in a sex-specific manner.
Collapse
|
9
|
Perinatal Taurine Supplementation Prevents the Adverse Effects of Maternal Dyslipidemia on Growth and Cardiovascular Control in Adult Rat Offspring. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31468419 DOI: 10.1007/978-981-13-8023-5_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Maternal dyslipidemia induces metabolic and cardiovascular disorders in adult offspring. This study tests the hypothesis that perinatal taurine supplementation prevents the adverse effects of maternal dyslipidemia on growth and cardiovascular function in adult rat offspring. Female Wistar rats were fed normal rat chow and water with (Dyslipidemia) or without dyslipidemia induction (Control) by intraperitoneal Triton WR-1339 injection, three times a week for 4 weeks. The female Control and Dyslipidemia rats were supplemented with (Control+T, Dyslipidemia+T) or without 3% taurine in water from conception to weaning. After weaning, male and female offspring were fed normal rat chow and water throughout the experiment. At 16 weeks of age, body weights significantly increased in male but not female Dyslipidemia compared to other groups, while visceral fat content significantly increased in both male and female Dyslipidemia groups. Further, both sexes displayed similar high fasting blood sugar and normal plasma leptin levels among the groups. While plasma total cholesterol and triglycerides significantly increased only in female Dyslipidemia, low-density lipoprotein cholesterol increased in both male and female Dyslipidemia groups. Mean arterial pressures and heart rates significantly increased, while baroreflex sensitivity decreased in male and female Dyslipidemia compared to all other groups. High-density lipoprotein cholesterol did not significantly different among male or female groups. These changes of the male and female Dyslipidemia group were ameliorated by perinatal taurine supplementation. The present study indicates that perinatal taurine supplementation prevents the adverse effects of maternal dyslipidemia on growth and cardiovascular function in both male and female, adult offspring.
Collapse
|
10
|
Taurine Supplementation Inhibits Cardiac and Systemic Renin-Angiotensin System Overactivity After Cardiac Ischemia/Reperfusion in Adult Female Rats Perinatally Depleted of Taurine Followed by High Sugar Intake. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31468389 DOI: 10.1007/978-981-13-8023-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Perinatal taurine depletion and high sugar intake from weaning onward worsen cardiac damage and arterial pressure control after ischemia/reperfusion (IR) in adult male and female rats, which can be ameliorated by high taurine diets or inhibition of renin-angiotensin system. This study tests if taurine supplementation ameliorates cardiac damage and arterial pressure control in adult female rats via alterations of both cardiac and systemic renin-angiotensin system. Female Sprague-Dawley rats were fed normal rat chow and drank water alone (control, C) or water containing 3% beta-alanine (taurine depletion, TD) from conception to weaning, and female offspring were subjected to high sugar intake (normal rat chow and 5% glucose in water; CG and TDG) or the normal rat diet (CW and TDW). At 7 weeks of age, half of the rats in each group received 3% taurine in water (CW+T, CG+T, TDW+T, and TDG+T). One week later, rats were subjected to IR or Sham procedures followed by renal nerve recording, plasma and cardiac angiotensin II measurements. Cardiac angiotensin II levels significantly elevated in CG, TDW, and TDG. Further, plasma angiotensin II concentrations were significantly elevated only in the TDG, in consistent with a significant increase in renal nerve activity to juxtaglomerular cells, but not renal vessels and tubules. These abnormalities were ameliorated by short-term taurine supplementation. Thus, in adult female rats that are perinatally depleted of taurine followed by high sugar intake after weaning, taurine supplementation decreases the adverse effects of cardiac IR via inhibition of both cardiac and systemic renin-angiotensin system overactivity.
Collapse
|
11
|
Mongkhonsiri P, Tong-un T, Wyss JM, Roysommuti S. Blunted Nighttime Sympathetic Nervous System Response to Stress Among Thai Men with Positive Family History of Sudden Unexplained Nocturnal Death Syndrome. Int Heart J 2019; 60:55-62. [DOI: 10.1536/ihj.18-061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Pitsini Mongkhonsiri
- Department of Physiology, Faculty of Medicine, Khon Kaen University
- Research Division, Praboromarajchanok Institute for Health Workforce Development, Ministry of Public Health
| | - Terdthai Tong-un
- Department of Physiology, Faculty of Medicine, Khon Kaen University
| | - James Michael Wyss
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham
| | - Sanya Roysommuti
- Research Division, Praboromarajchanok Institute for Health Workforce Development, Ministry of Public Health
| |
Collapse
|
12
|
Bualeong T, Wyss JM, Roysommuti S. Inhibition of Renin-Angiotensin System from Conception to Young Mature Life Induces Salt-Sensitive Hypertension via Angiotensin II-Induced Sympathetic Overactivity in Adult Male Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:45-59. [PMID: 31468385 DOI: 10.1007/978-981-13-8023-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies indicate that perinatal compromise of taurine causes cardiovascular disorders in adults via the influence of taurine on renin-angiotensin system (RAS). This study tested whether perinatal inhibition of the RAS would itself alter the adult cardiovascular system in a similar way. Female Sprague-Dawley rats were fed normal rat chow and given water alone (Control) or water containing captopril (400 mg/l) from conception until weaning. Then, the male offspring drank water or water containing captopril until 5 weeks of age followed by normal rat chow and water alone until 7 weeks of age. Thereafter, they drank water alone (Control, Captopril) or 1% NaCl solution (Control+1%, Captopril+1%). At 9 weeks of age, all animals were implanted with femoral arterial and venous catheters. Forty-eight hours later, blood chemistry, glucose tolerance, and hemodynamic parameters were determined in freely moving conscious rats. Then, the same experiments were repeated 2 days after captopril treatment. Body weights, kidney and heart to body weight ratios, fasting and non-fasting blood sugar, glucose tolerance, and heart rates were not significantly different among groups. Further, plasma sodium, mean arterial pressure, and sympathetic activity significantly increased whereas baroreflex sensitivity decreased in Captopril+1% compared to other groups. These changes were normalized by acute captopril treatment and the arterial pressure differences also by acute ganglionic and central adrenergic blockade. The present study suggests that inhibition of the RAS in the early life induces RAS overactivity, leading to salt-sensitive hypertension via sympathetic nervous system overactivity and depressed baroreflex sensitivity in adult male rats.
Collapse
Affiliation(s)
- Tippaporn Bualeong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - James Michael Wyss
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
13
|
Thaeomor A, Teangphuck P, Chaisakul J, Seanthaweesuk S, Somparn N, Roysommuti S. Perinatal Taurine Supplementation Prevents Metabolic and Cardiovascular Effects of Maternal Diabetes in Adult Rat Offspring. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:295-305. [PMID: 28849464 DOI: 10.1007/978-94-024-1079-2_26] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study tests the hypothesis that perinatal taurine supplementation prevents diabetes mellitus and hypertension in adult offspring of maternal diabetic rats. Female Wistar rats were fed normal rat chow and tap water with (Diabetes group) or without diabetic induction by intraperitoneal streptozotocin injection (Control group) before pregnancy. Then, they were supplemented with 3% taurine in water (Control+T and Diabetes+T groups) or water alone from conception to weaning. After weaning, both male and female offspring were fed normal rat chow and tap water throughout the study. Blood chemistry and cardiovascular parameters were studied in 16-week old rats. Body, heart, and kidney weights were not significantly different among the eight groups. Further, lipid profiles except triglyceride were not significantly different among male and female groups, while male Diabetes displayed increased fasting blood glucose, decreased plasma insulin, and increased plasma triglyceride compared to other groups. Compared to Control, mean arterial pressures significantly increased and baroreflex control of heart rate decreased in both male and female Diabetes, while heart rates significantly decreased in male but increased in female Diabetes group. Although perinatal taurine supplementation did not affect any measured parameters in Control groups, it abolished the adverse effects of maternal diabetes on fasting blood glucose, plasma insulin, lipid profiles, mean arterial pressure, heart rate, and baroreflex sensitivity in adult male and female offspring. The present study indicates that maternal diabetes mellitus induces metabolic and cardiovascular defects more in male than female adult offspring, and these adverse effects can be prevented by perinatal taurine supplementation.
Collapse
Affiliation(s)
- Atcharaporn Thaeomor
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Punyaphat Teangphuck
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Suphaket Seanthaweesuk
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani, 12120, Thailand
| | - Nuntiya Somparn
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani, 12120, Thailand
| | - Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
14
|
Kulthinee S, Rakmanee S, Michael Wyss J, Roysommuti S. Taurine Supplementation Ameliorates the Adverse Effects of Perinatal Taurine Depletion and High Sugar Intake on Cardiac Ischemia/Reperfusion Injury of Adult Female Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:741-755. [PMID: 28849496 DOI: 10.1007/978-94-024-1079-2_58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Perinatal taurine depletion followed by high sugar intake after weaning adversely affects myocardial and arterial pressure function following a myocardial ischemia and reperfusion (IR) insult in adult female rats. This study tests the hypothesis that taurine supplementation ameliorates this adverse effect. Female Sprague-Dawley rats were fed normal rat chow and drank water containing β-alanine from conception until weaning (taurine depletion, TD). After weaning, female offspring were fed normal rat chow and drank either water containing 5% glucose (TDG) or water alone (TDW). At 6-7 weeks of age, half the rats in each group were supplemented with taurine and 1 week later subjected to cardiac IR. Body weight, heart weight, plasma electrolytes, plasma creatinine, blood urea nitrogen, and hematocrit were not significantly different among the four groups. The mean arterial pressures significantly increased in all groups after IR, but values were not significantly different among the four groups. Heart rates were significantly increased after IR only in TDW group. Compared to TDW, TDG displayed increased plasma cardiac injury markers (creatinine kinase-MB, troponin T, and N-terminal prohormone brain natriuretic peptide), increased sympathetic activity, decreased parasympathetic activity, and decreased baroreflex sensitivity after IR. Taurine supplementation completely restored the baroreflex and autonomic dysfunction of TDG to TDW levels and partially decreased myocardial injury after cardiac IR. The present study indicates that in adult female rats, perinatal taurine depletion followed by high sugar intake after weaning exacerbates cardiac IR injury and arterial pressure dysregulation and these adverse effects can be partially prevented by taurine supplementation.
Collapse
Affiliation(s)
- Supaporn Kulthinee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sasipa Rakmanee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - J Michael Wyss
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
15
|
Roysommuti S, Lerdweeraphon W, Michael Wyss J. Perinatal Taurine Imbalance Followed by High Sugar Intake Alters the Effects of Estrogen on Renal Excretory Function in Adult Female Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:769-787. [PMID: 28849498 DOI: 10.1007/978-94-024-1079-2_60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study tests the hypothesis that perinatal taurine imbalance impairs renal function in adult female rats via alterations in estrogen activity. Female Sprague-Dawley rats were fed normal rat chow and water containing 3% beta-alanine (TD), 3% taurine (TS) or water alone (C) from conception until weaning. Then, female offspring received normal rat chow and water with (CG, TDG, TSG) or without (CW, TDW, TSW) 5% glucose. At 7-8 weeks of age, renal function at rest and after acute saline load was tested in conscious, restrained female rats treated with non-selective estrogen receptor blocker tamoxifen for a week. Compared to control, TD or TS did not affect mean arterial pressure (MAP). Tamoxifen significantly increased resting MAP only in TDG compared to TDW groups. Although renal blood flow did not significantly differ among the groups, renal vascular resistance increased in TSG compared to CW, CG, and TSW groups. Glomerular filtration rate and water and sodium excretion were not significantly different among the groups. Compared to CW, saline load significantly depressed fractional water excretion in CG, TDW, TDG, and TSW, and fractional sodium excretion in CG, TDW, TDG, TSW, and the TSG groups. Potassium excretion was not significantly different among the corresponding groups. Fractional potassium excretion significantly increased in TDW compared to CG and in TSG compared to CG and TSW groups. These differences were abolished by tamoxifen treatment. These data indicate that in adult female rats, perinatal taurine imbalance, particularly followed by high sugar intake, alters renal function via an estrogenic mechanism.
Collapse
Affiliation(s)
- Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Wichaporn Lerdweeraphon
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Faculty of Veterinary Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - J Michael Wyss
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
16
|
Lerdweeraphon W, Michael Wyss J, Roysommuti S. Perinatal Taurine Supplementation Alters Renal Function via Renin-Angiotensin System Overactivity in Adult Female Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:757-768. [PMID: 28849497 DOI: 10.1007/978-94-024-1079-2_59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study tests the hypothesis that perinatal taurine supplementation followed by a high sugar diet since weaning impairs renal function via renin-angiotensin system (RAS) overactivity in adult female rats. Female Sprague-Dawley rats were fed normal rat chow and given water alone or water containing 3% taurine from conception until weaning. After weaning, the female rats received normal rat chow and water with (CG, TSG) or without (CW, TSW) 5% glucose throughout the experiment. At 7-8 weeks of age, renal function at rest and after an acute saline load was tested in conscious female rats after a week of captopril treatment. Body, heart, and kidney weights were not significantly different among the eight groups. Mean arterial pressures and heart rates were also not different among the groups. While effective renal blood flow did not significantly differ among the eight groups, TSG displayed higher renal vascular resistance compared to CW, CG, and TSW groups. Glomerular filtration rate, filtration fraction, and water and sodium excretion did not significantly differ among the groups. Compared to CW, the saline load significantly depressed fractional water excretion in CG and TSW and fractional sodium excretion in CG, TSW, and TSG groups. Captopril treatment abolished these differences but significantly decreased potassium excretion in CG, TSW, and TSG compared to CW and abolished the increased fractional potassium excretion in TSG compared to CG and TSW groups. These data strongly suggest that in adult female rats, perinatal taurine supplementation, particularly followed by high sugar intake, alters renal function via altered RAS activity.
Collapse
Affiliation(s)
- Wichaporn Lerdweeraphon
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Faculty of Veterinary Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - J Michael Wyss
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
17
|
Choi MJ, Jung YJ. Effects of Taurine and Vitamin D on Antioxidant Enzyme Activity and Lipids Profiles in Rats Fed Diet Deficient Calcium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:1081-1092. [PMID: 28849524 DOI: 10.1007/978-94-024-1079-2_86] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Calcium deficiency is a worldwide problem affecting both developed and developing countries. The deficiency in calcium leads to a marked decrease of superoxide dismutase. It is known that vitamin D protects cells against oxidative damages while taurine plays an anti-inflammatory and antioxidant role. In this study, we examined whether vitamin D and taurine supplementation had a protective effect on oxidative stress in rats fed calcium deficient diet. Female SD rats (mean weight 60 ∼ 70 g) were divided into four groups; control, taurine, vitamin D, taurine + vitamin D for 6 weeks (taurine: 2 g/100 g diet, vitamin D: 0.5 mg/100 g diet). We then analyzed the level of triglyceride (TG), total cholesterol (TC), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C) in serum and level of TC, TG in liver. We investigated antioxidative enzyme activities such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). We observed that weight gain was not significantly different in the experimental groups. Food efficiency ratio (FER) was significantly higher in the normal control group than the taurine and vitamin D groups (p < 0.05). The level of liver TC was significantly lower in taurine, vitamin D, taurine + vitamin D groups than control group (p < 0.05). The concentration of malondialdehyde (MDA) was significantly lower in the taurine group than the control group. The activity of SOD was higher in taurine group than other experimental groups (p < 0.05), but GSH-Px and CAT were not significantly different. In conclusion, taurine has a positive effect on SOD activity but not on vitamin D. Also taurine and vitamin D have a protective effect as observed in liver TC in rats fed with a diet which lacks calcium.
Collapse
Affiliation(s)
- Mi-Ja Choi
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea.
| | - Yun-Jung Jung
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| |
Collapse
|
18
|
Rakmanee S, Kulthinee S, Wyss JM, Roysommuti S. Taurine Supplementation Reduces Renal Nerve Activity in Male Rats in which Renal Nerve Activity was Increased by a High Sugar Diet. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:27-37. [PMID: 28849441 DOI: 10.1007/978-94-024-1079-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study tests the hypothesis that taurine supplementation reduces sugar-induced increases in renal sympathetic nerve activity related to renin release in adult male rats. After weaning, male rats were fed normal rat chow and drank water containing 5% glucose (CG) or water alone (CW) throughout the experiment. At 6-7 weeks of age, each group was supplemented with or without 3% taurine in drinking water until the end of experiment. At 7-8 weeks of age, blood chemistry and renal nerve activity were measured in anesthetized rats. Body weights slightly and significantly increased in CG compared to CW groups but were not significantly affected by taurine supplementation. Plasma electrolytes except bicarbonate, plasma creatinine, and blood urea nitrogen were not significantly different among the four groups. Mean arterial pressure significantly increased in both taurine treated groups compared to CW, while heart rates were not significantly different among the four groups. Further, all groups displayed similar renal nerve firing frequencies at rest and renal nerve responses to sodium nitroprusside and phenylephrine infusion. However, compared to CW group, CG significantly increased the power density of renin release-related frequency component, decreased that of sodium excretion-related frequency component, and decreased that of renal blood flow-related frequency component. Taurine supplementation completely abolished the effect of high sugar intake on renal sympathetic activity patterns. These data indicate that in adult male rats, high sugar intake alters the pattern but not firing frequency of sympathetic nerve activity to control renal function, and this effect can be improved by taurine supplementation.
Collapse
Affiliation(s)
- Sasipa Rakmanee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supaporn Kulthinee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Community Public Health, Faculty of Science and Technology, Rajabhat Mahasarakham University, Mahasarakarm, 44000, Thailand
| | - J Michael Wyss
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
19
|
Chouraki V, Preis SR, Yang Q, Beiser A, Li S, Larson MG, Weinstein G, Wang TJ, Gerszten RE, Vasan RS, Seshadri S. Association of amine biomarkers with incident dementia and Alzheimer's disease in the Framingham Study. Alzheimers Dement 2017; 13:1327-1336. [PMID: 28602601 DOI: 10.1016/j.jalz.2017.04.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The identification of novel biomarkers associated with Alzheimer's disease (AD) could provide key biological insights and permit targeted preclinical prevention. We investigated circulating metabolites associated with incident dementia and AD using metabolomics. METHODS Plasma levels of 217 metabolites were assessed in 2067 dementia-free Framingham Offspring Cohort participants (mean age = 55.9 ± 9.7 years; 52.4% women). We studied their associations with future dementia and AD risk in multivariate Cox models. RESULTS Ninety-three participants developed incident dementia (mean follow-up = 15.6 ± 5.2 years). Higher plasma anthranilic acid levels were associated with greater risk of dementia (hazard ratio [HR] = 1.40; 95% confidence interval [CI] = [1.15-1.70]; P = 8.08 × 10-4). Glutamic acid (HR = 1.38; 95% CI = [1.11-1.72]), taurine (HR = 0.74; 95% CI = [0.60-0.92]), and hypoxanthine (HR = 0.74; 95% CI = [0.60-0.92]) levels also showed suggestive associations with dementia risk. DISCUSSION We identified four biologically plausible, candidate plasma biomarkers for dementia. Association of anthranilic acid implicates the kynurenine pathway, which modulates glutamate excitotoxicity. The associations with hypoxanthine and taurine strengthen evidence that uric acid and taurine may be neuroprotective.
Collapse
Affiliation(s)
- Vincent Chouraki
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; The Framingham Heart Study, Framingham, MA, USA; Lille University, Inserm, Lille University Hospital, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Labex Distalz, Lille, France.
| | - Sarah R Preis
- The Framingham Heart Study, Framingham, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Qiong Yang
- The Framingham Heart Study, Framingham, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alexa Beiser
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Shuo Li
- The Framingham Heart Study, Framingham, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Martin G Larson
- The Framingham Heart Study, Framingham, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | - Thomas J Wang
- The Framingham Heart Study, Framingham, MA, USA; Division of Cardiovascular Medicine, Vanderbilt Heart & Vascular Institute, Nashville, TN, USA
| | - Robert E Gerszten
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramachandran S Vasan
- The Framingham Heart Study, Framingham, MA, USA; Department of Medicine (Sections of Preventive Medicine and Cardiology), Boston University School of Medicine, Boston, MA, USA
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; The Framingham Heart Study, Framingham, MA, USA.
| |
Collapse
|
20
|
Chanavirut R, Tong-Un T, Jirakulsomchok D, Wyss JM, Roysommuti S. Abnormal autonomic nervous system function in rural Thai men: A potential contributor to their high risk of sudden unexplained nocturnal death syndrome. Int J Cardiol 2017; 226:87-92. [PMID: 27792993 DOI: 10.1016/j.ijcard.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Rural compared to urban Thai populations have a higher incidence of sudden unexplained nocturnal death syndrome (SUNDS). This study tests the hypothesis that compared to young urban Thai men, the young rural northeast Thai men display autonomic system dysfunction that may contribute to their relatively high risk to develop SUNDS. METHODS Forty-seven healthy second and third year students from Khon Kaen University (20-22years old) were divided into central, urban northeastern, and rural northeastern groups, based on the locality in which they had grown up and in which their parents had lived prior to their birth. RESULTS Body weight, body height, serum sodium, serum potassium, fasting blood sugar, glucose tolerance, resting mean arterial pressure, resting heart rate, ulnar nerve conduction velocity, and sympathetic and parasympathetic nervous system activity were not significantly different among the three groups. In contrast, compared to urban northeasterners and central Thais, rural northeasterners displayed low sympathetic and high parasympathetic responses to cold stress and oral saline load; however, baroreflex sensitivity and the autonomic nervous system responses to upright tilt were not significantly different among the three groups. In addition, respiratory rates at rest and in response to upright tilt, cold stress, and oral saline load were not significantly different among the three groups. CONCLUSIONS These data indicate that compared to central or urban, individuals from rural origin display decreased sympathetic and increased parasympathetic responses to stresses. These altered responses could predispose the individuals to inappropriate autonomic control during the stresses, including those resulting in SUNDS.
Collapse
Affiliation(s)
- Raoyrin Chanavirut
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Terdthai Tong-Un
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Dusit Jirakulsomchok
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - J Michael Wyss
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, AL 35294, USA
| | - Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
21
|
Taurine protects against As2O3-induced autophagy in pancreas of rat offsprings through Nrf2/Trx pathway. Biochimie 2016; 123:1-6. [DOI: 10.1016/j.biochi.2016.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/11/2016] [Indexed: 01/06/2023]
|
22
|
Ananchaipatana-Auitragoon P, Ananchaipatana-Auitragoon Y, Siripornpanich V, Kotchabhakdi N. Protective role of taurine in developing offspring affected by maternal alcohol consumption. EXCLI JOURNAL 2015; 14:660-71. [PMID: 26648819 PMCID: PMC4669913 DOI: 10.17179/excli2015-240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/20/2015] [Indexed: 12/27/2022]
Abstract
Maternal alcohol consumption is known to affect offspring growth and development, including growth deficits, physical anomalies, impaired brain functions and behavioral disturbances. Taurine, a sulfur-containing amino acid, is essential during development, and continually found to be protective against neurotoxicity and various tissue damages including those from alcohol exposure. However, it is still unknown whether taurine can exert its protection during development of central nervous system and whether it can reverse alcohol damages on developed brain later in life. This study aims to investigate protective roles of taurine against maternal alcohol consumption on growth and development of offspring. The experimental protocol was conducted using ICR-outbred pregnant mice given 10 % alcohol, with or without maternal taurine supplementation during gestation and lactation. Pregnancy outcomes, offspring mortality and successive bodyweight until adult were monitored. Adult offspring is supplemented taurine to verify its ability to reverse damages on learning and memory through a water maze task performance. Our results demonstrate that offspring of maternal alcohol exposure, together with maternal taurine supplementation show conserved learning and memory, while that of offspring treated taurine later in life are disturbed. Taurine provides neuroprotective effects and preserves learning and memory processes when given together with maternal alcohol consumption, but not shown such effects when given exclusively in offspring.
Collapse
Affiliation(s)
- Pilant Ananchaipatana-Auitragoon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhonpathom 73170, Thailand
| | | | - Vorasith Siripornpanich
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhonpathom 73170, Thailand
| | - Naiphinich Kotchabhakdi
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhonpathom 73170, Thailand
| |
Collapse
|
23
|
Vijitjaroen K, Punjaruk W, Wyss JM, Roysommuti S. Perinatal taurine exposure alters hematological and chemical properties of blood in adult male rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:157-66. [PMID: 25833496 DOI: 10.1007/978-3-319-15126-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Krissada Vijitjaroen
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | |
Collapse
|
24
|
Abe Y, Ohkuri T, Yoshitomi S, Murakami S, Ueda T. Role of the osmolyte taurine on the folding of a model protein, hen egg white lysozyme, under a crowding condition. Amino Acids 2015; 47:909-15. [PMID: 25604803 DOI: 10.1007/s00726-015-1918-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/06/2015] [Indexed: 12/21/2022]
Abstract
Taurine is one of the osmolytes that maintain the structure of proteins in cells exposed to denaturing environmental stressors. Recently, cryoelectron tomographic analysis of eukaryotic cells has revealed that their cytoplasms are crowded with proteins. Such crowding conditions would be expected to hinder the efficient folding of nascent polypeptide chains. Therefore, we examined the role of taurine on the folding of denatured and reduced lysozyme, as a model protein, under a crowding condition. The results confirmed that taurine had a better effect on protein folding than did β-alanine, which has a similar chemical structure, when the protein to be folded was present at submillimolar concentration. NMR analyses further revealed that under the crowding condition, taurine had more interactions than did β-alanine with the lysozyme molecule in both the folded and denatured states. We concluded that taurine improves the folding of the reduced lysozyme at submillimolar concentration to allow it to interact more favorably with the lysozyme molecule. Thus, the role of taurine, as an osmolyte in vivo, may be to assist in the efficient folding of proteins.
Collapse
Affiliation(s)
- Yoshito Abe
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | | | | | | | | |
Collapse
|
25
|
Kulthinee S, Wyss JM, Roysommuti S. Taurine supplementation prevents the adverse effect of high sugar intake on arterial pressure control after cardiac ischemia/reperfusion in female rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:597-611. [PMID: 25833530 DOI: 10.1007/978-3-319-15126-7_48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Supaporn Kulthinee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | |
Collapse
|
26
|
Gu L, Li S, Zhang R, Zhang Y, Wang X, Zhang K, Liu Z, Bi K, Chen X. Integrative investigation of Semen Strychni nephrotoxicity and the protective effect of Radix Glycyrrhizae by a UPLC-MS/MS method based cell metabolomics strategy in HEK 293t cell lysates. RSC Adv 2015. [DOI: 10.1039/c5ra07708g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Scheme of the cell metabolomics strategy workflow.
Collapse
Affiliation(s)
- Liqiang Gu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Shujuan Li
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Ruowen Zhang
- Stem Cell Institute
- Department of Biochemistry and Molecular Genetics
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Yuanyuan Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xiaofan Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Kexia Zhang
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Ziying Liu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Kaishun Bi
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xiaohui Chen
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
27
|
Roysommuti S, Kritsongsakchai A, Wyss JM. The Effect of Perinatal Taurine on Adult Renal Function Does Not Appear to Be Mediated by Taurine's Inhibition of the Renin-Angiotensin System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:665-77. [PMID: 25833535 DOI: 10.1007/978-3-319-15126-7_53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study tests the hypothesis that perinatal taurine supplementation alters adult renal function by inhibition of the renin-angiotensin system. Female Sprague-Dawley rats were fed normal rat chow and given water alone (Control) or water containing an angiotensin converting enzyme inhibitor (captopril, 400 mg/ml) from conception until delivery (FD) or from delivery until weaning (LD). After weaning, the rats received normal rat chow and tap water. At 7–8 weeks of age, renal function at rest and after acute saline load was studied in conscious, restrained male rats. Body weight, mean arterial pressure, heart rate, effective renal blood flow, and renal vascular resistance were not significantly different among the three groups. Compared to Control, glomerular filtration rate, but not filtration fraction, significantly increased after saline load in both FD and LD groups. Water excretion significantly increased only in FD compared to Control, while fractional water excretion was significantly increased after saline load in both FD and LD groups. Sodium excretion significantly increased after saline load only in FD, while both captopril-treated groups significantly decreased fractional sodium excretion. Potassium excretion significantly increased in both FD and LD groups, while fractional potassium excretion significantly increased at rest in FD and decreased in LD groups after saline load. These effects of perinatal RAS inhibition on adult renal function contrast sharply, and are opposite in many cases to, the effects of perinatal taurine supplementation. Thus, these data suggest that perinatal taurine supplementation does not alter adult renal function through its ability to inhibit the perinatal RAS.
Collapse
Affiliation(s)
- Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | | | |
Collapse
|
28
|
Ma C, Hu L, Tao G, Lv W, Wang H. An UPLC-MS-based metabolomics investigation on the anti-fatigue effect of salidroside in mice. J Pharm Biomed Anal 2014; 105:84-90. [PMID: 25543286 DOI: 10.1016/j.jpba.2014.11.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/25/2022]
Abstract
An ultra-performance liquid chromatography-quadrupole time-of-flight-based metabolomic approach was developed to study influence of salidroside, an anti-fatigue ingredient from Rhoiola rosea, on urinary metabolic profiling of rats to a single dose of 180 mg/kg per day. Unsupervised principal component analysis (PCA) and supervised orthogonal pre-projection to latent structures discriminate analysis (OPLS-DA) on metabolite profiling revealed obvious differentiation between the salidroside treated groups and controls in both positive and negative ion modes. Eleven urinary metabolites contributing to the differentiation were identified as anti-fatigue biomarkers: N-acetylserotonin, 2-Methoxyestrone 3-glucuronide, Taurine, Melatonin, Sorbitol, Geranyl diphosphate, Z-nucleotide, Cortisone, Dihydrocortisol, Sebacic acid, Pregnenolone sulfate. The physiological significance of these biomarkers is discussed. The work showed that metabolomics is a powerful tool in studying the anti-fatigue effects of natural compound salidroside on multiple targets in vivo.
Collapse
Affiliation(s)
- Chaoyang Ma
- State Key Laboratory of Food Science and Technology (Jiangnan University), School of Food Science and Technology, 1800 Lihu Road, 214122 Wuxi, China
| | - Liming Hu
- Air Force Logistics College, Xuzhou, Jiangshu 221006, China
| | - Guanjun Tao
- State Key Laboratory of Food Science and Technology (Jiangnan University), School of Food Science and Technology, 1800 Lihu Road, 214122 Wuxi, China
| | - Wenping Lv
- State Key Laboratory of Food Science and Technology (Jiangnan University), School of Food Science and Technology, 1800 Lihu Road, 214122 Wuxi, China
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology (Jiangnan University), School of Food Science and Technology, 1800 Lihu Road, 214122 Wuxi, China.
| |
Collapse
|